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Preface 

CESAM Community and CESAMES Association 

CESAM Community, which allowed the origin of the CESAM Method and its Pocket Guide, is 

managed by CESAMES Association. 

CESAMES Association emerged in 2009 as a spin-off of the Ecole Polytechnique “Engineering of 

Complex Systems” chair with the aim of disseminating systems architecting in academia & industry. 

To do so, the Association organizes awareness events all year long for the Scientifics and 

Professionals to meet and share about complex systems. As an example, CESAMES Association 

organizes on a yearly basis the “Complex Systems Design & Management” (CSD&M) international 

conference series. Since 2010 in Paris and 2014 in Singapore, this event gathers each year more than 

200 academic & professional participants, coming from all parts of the world. The Association also 

manages thematic evenings and working groups, always with the same goal: increasing awareness 

about systems architecting methods and tools. 

Thanks to these events, CESAMES Association has federated a significant international community of 

system engineers and architects. They all share the same vision: architecture and system engineering 

represent a key factor of competitiveness for the companies.  

In order to reinforce its visibility and get more influence at a worldwide level, CESAMES Association 

has created in 2017 the official “CESAM Community”. Its mission remains the same: organizing the 

sharing of good practices in Enterprise Architecture and System Architecture and attesting their 

capacity to be implemented through the CESAM certification worlwide. 

More precisely, CESAM Community works to: 

 Make architecture a key tool for business competitiveness by disseminating its use in 

companies and by communicating the results of its implementation through the visibility and 

actions of CESAM Community. 

 Propose and develop the best practices of systems architecture in the industry and the 

services: through the creation of publications and guides and the sharing of lessons of 

experience between architects, systems engineers and urban planners during the events of 

the community. 

 Propose a generic architecture framework but also offer high-level systems architecture 

frameworks, specific to some industrial applications (the first will be aeronautics and 

automotive). This is to facilitate the work of system architects within these activities. 

 Facilitate access to the CESAM method and develop its use in France and worldwide. 

 

http://cesam.community/en/cesames-association/
http://cesam.community/en/cesam/
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CESAMES Systems Architecting Method (CESAM) 

CESAM Community and its members act as the initial developers & contributors of the CESAMES 

Systems Architecting Method (CESAM) which is presented more in details in this pocket guide.  

CESAM is a systems architecting & modelling framework, developed since 2003 in close interaction 

with many industrial leading companies. It is dedicated to the working systems architects, engineers 

or modelers to help them to better master the complex integrated systems they are dealing with. 

CESAM framework indeed has a number of unique features: 

1. First of all, CESAM has sound mathematical fundamentals which are providing a rigorous and 

unambiguous semantics to all introduced architectural concepts. This first property is clearly 

key for ensuring an efficient and real understanding1 between the stakeholders of a system 

design project (which is often key for ensuring the success of such projects).  

2. These bases do ensure that CESAM is a logically complete lean system modelling framework: 

in other terms, the architectural views proposed by CESAM are just necessary and sufficient 

to model any integrated system. This second property guarantees both the completeness of 

a CESAM system model and that no useless modelling work will be done when using CESAM. 

3. Finally CESAM is practically robust and easy-to-use both by systems architects and systems 

modelers. This was indeed pragmatically observed among the very large amount of various 

concrete systems within many different industrial areas (aeronautics, automotive, defense & 

security, energy, train, etc.) that were already modelled and architected using CESAM.  

Note also that CESAM framework – due to the right level of abstraction to which it positions – can be 

implemented and used with both quite all existing system modelling frameworks and software tools 

of the market. However it is worth noticing that Dassault Systèmes decided to choose CESAM as the 

core framework of its system modeling tool, Catia Systems Engineering2.  

Last but not least, one shall finally notice that CESAM intends to propose both a generic architecting 

framework (which is introduced in this pocket guide), but also to progressively offer specific concrete 

high-level systems architectures for a number of industrial application domains (the first ones will be 

aircrafts and cars) in order to facilitate the work of the systems architects within these areas. 

How to Read this Pocket Guide? 

The CESAM pocket guide is organized in order to be read in many different ways. Typical reading 

modes are presented below depending on the reader’s objectives.  

 Getting an Overview of CESAM Framework: you shall then focus on Chapter 2 where all the 

core CESAM systems architecture concepts are presented. 

 Being Aware of Systems Architecting Benefits: you may only read Chapter 1 where the main 

motivations of systems architecting are described. 

                                                           
1 This feature is in particular fundamental for managing convergence between the stakeholders of a system design project. 
It explains thus why collaboration is also at the core of CESAM framework (see sections 0.3 and 1.4 for more details).   

2 Web Address:  http://www.3ds.com/products-services/catia/products/v6/portfolio/d/digital-product-experience/s/catia-
systems-engineering/ 

http://www.3ds.com/products-services/catia/products/v6/portfolio/d/digital-product-experience/s/catia-systems-engineering/
http://www.3ds.com/products-services/catia/products/v6/portfolio/d/digital-product-experience/s/catia-systems-engineering/
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 Modelling Systems: read first Chapter 2 to get an overview of CESAM systems architecture 

views and follow then from Chapter 3 up to Chapter 6 in order to learn one-by-one what are 

all the views requested to model completely an integrated system. 

 Practicing Systems architecting: a systems architect shall know how to model a system, but 

also, much more deeply, what are the needs the system shall satisfy, which will lead him to 

regularly take design decisions. We do recommend systems architects to read first Chapter 1 

to be aware of the main motivations of systems architecting. You may then pass to Chapter 2 

up to Chapter 7 in order to learn both the main systemic views, but also how to use them in 

an architectural decision process (which is discussed in Chapter 7). Chapter 8 will also provide 

you some indications on how to progress in systems architecting.  

 Understanding Systems Architecting Fundamentals: Chapter 0 is dedicated to the reader 

who wants to discover the sound logical basis on which relies CESAM framework. 

CESAM Pocket Guide Organization 

The CESAM pocket guide is organized in eight chapters, plus some appendices specifically dedicated 

to more specialized material, as described below. 

 Chapter 0 – Introduction to CESAM that may be skipped for a first approach. 

 Chapter 1 – Why Architecting Systems? which presents the main motivations of the systems 

architecting approach and thus of CESAM framework. 

 Chapter 2 – CESAM Framework that provides an overview of all CESAM concepts.  

 Chapters 3 to 6, that do present in details, one after the other, each architectural vision of 

the CESAM systems modelling framework: 

o Chapter 3  – Identifying Stakeholders: Environment Architecture,   

o Chapter 4 – Understanding Interactions with Stakeholders: Operational Architecture, 

o Chapter 5 – Defining What shall Do the System: Functional Architecture, 

o Chapter 6 – Deciding How shall be Formed the System: Constructional Architecture. 

 Chapter 7 – Choosing the best Architecture: Trade-off, that introduces to systems 

architecture prioritization, a key tool for the systems architect.  

 Chapter 8 – Conclusion which gives some hints to reader on how continuing the systems 

architecting journey initiated by this pocket guide.  
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Chapter 0 – Introduction to CESAM 

0.1 CESAM: a Mathematically Sound System Modeling Framework 

CESAMES Systems Architecting Method (CESAM) is the result of 12 years of research & development 

(cf. [1], [3], [4], [16], [17], [18], [22], [27], [48], [49], [51], [52], [53]) including permanent interactions 

and operational experimentations with industry. The CESAM framework was indeed used in practice 

within several leading international industries in many independent areas with a success that has 

never wavered (see [14], [23], [26], [31], [32], [33], [35] or [36]) for some application examples). This 

huge theoretical and experimental effort resulted in a both mathematically sound & practical system 

modeling framework, easy to use by working systems engineers and architects.  

We shall only present in this general introduction the more important fundamentals3 of the CESAM 

framework that may help to better understand its philosophy. At this level, the key point is the 

logical consistency of the CESAM framework, naturally provided by its mathematical basis. Due to 

this strong consistency, anybody who agrees with logical reasoning4 (which shall normally be the case 

with all engineers) will indeed be able to use and work with CESAM framework.     

 

Figure 1 – The two abstracting/ experimenting sides of a system modeling process 

Note now first that systems are considered in a modelling perspective within CESAM framework. This 

point of view immediately leads to distinguish the two core concepts of “formal system” and “real 

system”. It is indeed quite important to avoid making any confusion5 between the result of a system 

                                                           
3 CESAM framework is based on formal semantics, the mathematical theory – based on mathematical logics (cf. [12]) – 
which provides the fundamentals of computer science (see [89]) CESAM framework may be understood as an extension of 
usual formal semantics – which only addresses software systems –  to more general types of systems.   

4 Logical reasoning is usually mixed with common sense. However one shall not forget that logics is a body of mathematical 
knowledge (see [12]), sadly largely unknown to engineers, that can be traced back to Aristoteles (see [84]). 

5 Unfortunately this confusion is quite common in systems engineering where such a distinction is usually not made both in 
practice and in most textbooks, handbooks and standards (such as [15], [42], [44], [47], [57], [61], [62], [71], [74] or [78]). 
Aslaksen appears in particular to be one of the rare systems engineering authors who proposed a formal definition for a 
system (see [9] or [10]). Sound systems modelling formalisms thus seem to be only found in the mathematical simulation 
literature (cf. [23], [73] or [100]) or in the few theoretical computer science system literature (cf. [21], [55] or [59]).   
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modelling process (the formal system) and the concrete object under modelling (the real system). 

Many design mistakes – with often high costs of non-quality – are indeed made by engineers when 

they forget that their system specification documentation is just an abstraction of reality, but not the 

“real” reality, and that their job is to ensure permanent alignment – through feedback loops with 

reality – between their system models and the real system, as it is and not as they think it is.  

A system modeling process can thus be seen as a permanent back-and-forth between, on a first side, 

an abstraction activity that constructs a formal model of a real world object – using the tools of 

systemic analysis – and on a second side, an experimentation activity where the structure or behavior 

of the real object, as given or predicted by the model, are checked against those really observed in 

reality. The real object under modelling will thus be considered as a (real) system due to the fact that 

a system modeling process analyzes it as a (formal) system within a systemic modelling framework. 

By abuse of language, we often identify these two concepts of "system", but it is important never to 

forget that "the map is not the territory" ([46]) in order to know at any time on what we reason! 

Note also that this approach points out that being a system is absolutely not an intrinsic property of 

an object6, but results from a modelling decision of a system designer. This being recalled, we can 

now provide the definition of a formal system7 on which relies the CESAM modelling framework.   

 
Definition 0.1 – Formal system – A formal system S is characterized on one hand by a input set X, an 

output set Y and an internal variables set Q and on the other hand by the following two kinds of 

behaviors that link these systemic variables among a given time scale T 8: 

 a functional behavior that produces an output y(t+)  Y at each moment of time t  T,   

depending on the current input x(t)  X and internal state q(t)  Q of the system ; 

 an internal behavior that results in the evolution q(t+)  Q of the internal state at each 

moment of time t  T,  under the action9 of a system input x(t)  X. 

 

 

 

 

Figure 2 – Standard representation of a formal system 

                                                           
6 This last consideration shows that it is merely impossible to give a sound definition of a real system since any object in the 
real world can be considered as a system as soon as a system designer decides it.  

7  The CESAM definition of a system provided by Definition 0.1 unifies two classical system modelling traditions: it indeed 
mixes the usual functional definition coming from the mathematical system simulation literature (cf. [23], [73] or [100]) and 
the state-machine system definition that emerged in theoretical computer science (cf. [21], [55] or [59]).   

8 A time scale T is a totally ordered set with a unique minimal element – usually denoted t0 – and where each element t  T 
has a (unique) greatest upper bound within the time scale, called its successor and denoted t+ within T. Up to rescaling, two 
types of time scales are key in practice: discrete time scales where t+ = t + 1 and continuous time scales where t+ = t + dt 
where dt stands for an infinitesimal quantity. Discrete time scales model event-oriented systems (such as software systems 
which are regulated by a discrete clock) when continuous time scales are used to model physical continuous phenomena.  

9 When this action is not permanent, one may identify the involved input to a discrete event which occurs only at a certain 

moment of time t  T, considered as instantaneous within T. Note however that an event is always relative to a given time 
scale: it may indeed not be instantaneous when analyzed from another, more refined, time scale. 

SYSTEM S 

Internal states:  

q(t)  Q 

Inputs: 

x(t) X 
Outputs: 

y(t) Y 
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This definition is deliberately very weak following Occam’s razor strategy10 that prevails throughout 

CESAM framework. It simply means that a system is just defined by an input/output and an internal 

behavior11. This is of course not abnormal since we do want to capture commonalities between ALL 

real systems. These common points are therefore mechanically quite limited due to the tremendous 

diversity of the real objects to take into account. However we now have a unified system modelling 

framework, provided by the below Definition 0.2, in which we can uniformly reason on any type of 

systems and hence think system integration, which was one of our first goals (see section 0.2). 

 
Definition 0.2 – Real system – An object of the real world will be called a real system as soon as its 

structure and its behavior can be described by a formal system (in the meaning of Definition 0.1) that 

will be then called a model of the considered real system. 

According to this definition, quite all human artefacts – independently of their physical, informational 

or organizational nature – can thus be considered and analyzed as systems. Only changes the nature 

of the laws – given by physics, logics or sociology – that allow defining the functional and internal 

behaviors which are making them systems. The two previous definitions also help to understand that 

it is neither the nature, nor the size, nor the hierarchical position12 that makes something a system, 

since quite all real objects can be seen as systems. As already pointed out, considering that an object 

is a system remains first of all a modelling (human) choice: it just means that this object will be 

abstracted through a systemic point of view, i.e. in the framework given by Definition 0.1. 

 

Figure 3 – Structure of a standard complete system specification 

Note finally that the definitions we proposed above imply that a system S is completely specified (for 

a given time scale) if and only one is able to provide (see Figure 3): 

1. the states of S, i.e. a description of the evolution law of its internal variables, which can be 

typically achieved through a state-machine (see for instance [20] or [21]),  

                                                           
10 Occam’s razor (see [84]) is a key scientific parsimony principle which expresses that there is no need to introduce a new 
concept when it can be explained by already existing concepts. The CESAM system modeling framework is constructed in 
that way: we always only introduced the minimal number of new architectural concepts that are necessary for system 
modelling purposes. This typically explains why we proposed such a simple system definition: it is indeed minimal for 
understanding the structure of CESAM framework (see end of section 0.1).  

11 The internal behaviour of a system is modelled by an evolution law of its internal variables, called “states”. 

12  A common mistake is for instance to consider that a “sub-system” of a system (see next section 0.2 for more details) is 
not a system, which is of course absolutely not the case according to our definitions (this remark allows in particular to 
apply recursively the principles of system modelling within a given system hierarchy). 
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2. a description of its functional dynamics, which can be naturally obtained through defining: 

o the static elements of S, in other terms the signatures of the functions required to express 

its functional behavior, which can be given by a static block-diagram (see [34] or [73]), 

o the dynamic behavior of S, that is to say the temporal dynamics13 of these functions, 

which can be for instance defined by a sequence diagram (see [20] or [34]). 

These last considerations are at the core of the CESAM systems architecting matrix (see section 2.5) 

and do explain the generic nature of the key columns (states, static elements, dynamic behaviors as 

described in Figure 3) involved in that modelling matrix. 

Note that it may be useful to consolidate in a specific view all the exchanged input/output flows that 

do appear when describing the functional dynamics of a system. Such a view – which strictly speaking 

is already contained in the two other functional views introduced above – is indeed important for 

constructing the glossary of all flows exchanged within a system. This will lead us to the last column 

(objects) of the CESAM systems architecting matrix (see section 2.5). 

Up to now, we however only dealt with an extensional formalism for systems. When using Definition 

0.1, we are indeed obliged by construction to explicitly describe extensionally the behavioral and 

structural dimensions of a system (definition in extension). But there exists another different, but 

totally equivalent from a mathematical perspective, system specification formalism which is of 

intentional nature. This means that we do not need here to describe the behavior or structure of a 

system as before, but rather to express its expected/intended properties (definition in intension). 

That new formalism is based on a formal logic, called system temporal logic, which is presented in full 

details in Appendix A. The only point to stress here is that we will now need to work with systems 

whose input, output and internal states sets X, Y, Q and timescale T are fixed. The associated system 

temporal logic allows then to syntactically define well-formed logical formulae14, called temporal 

formulae, which specify the sequences O of inputs, outputs and internal states values of such a 

system that can be observed among all moments of time t within the timescale T, as stated below: 

O = (O(t)) for all t  T, where we set O(t) = (x(t), y(t), q(t))15. 

We are now in position to introduce the notion of formal system requirement which refers to logical 

predicates within system temporal logic (see Appendix A for several examples). 

 
Definition 0.3 – Formal requirement – Let S be a formal system with X, Y and Q as input, output and 

internal states sets and T as timescale. A formal requirement on S is a temporal formula expressed in 

system temporal logic, based on X, Y, Q, and T as described in Appendix A. 

Most of engineers would however be afraid working with system temporal logic. One is hence quite 

rarely16 using formal requirements to specify real systems. The only utility of the previous definition 

will then just be to remember that one works with logical formalisms when one manages systems 

                                                           
13 We here mean the underlying “algorithm” that expresses how the functional behaviour of S is obtained as a result of the 
interactions of a certain number of functions.  

14 Also called predicates in formal logic. 

15 We use here the formalism of Definition 0.1. 

16 Temporal logic is only classically used for the verification of real-time critical software systems.   
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requirements, which is usually forgotten. This explains why we now propose the following unformal 

definition that intends to reflect what should be a good requirements engineering practice17.  

 
Definition 0.4 – Requirement – A requirement on a real system S is then any sentence that intends to 

express a formal requirement on a formal system that models S.   

Note that each formal requirement R specifies a set of systems, which is the set of all formal systems 

that satisfy to R. A set SR of formal requirements specifies then also a set of formal systems, that is to 

say the set of formal systems that satisfy to all elementary requirements of SR. This simple property 

does establish a connection between sets of (formal) requirements and sets of (formal) systems. One 

can then prove that this connection is bijective, which means in other terms that it is mathematically 

strictly equivalent to specify sets of systems using either Definition 0.1 or sets of requirements. We 

thus have introduced two different equivalent ways of specifying systems.  

A wrong conclusion would now be to use either one, or the other formalism, for defining systems. 

Our two formalisms are indeed absolutely not equivalent in terms of engineering effort: some 

properties are indeed much easier to state using the formalism of Definition 0.1 when some others 

are much simpler to state using requirements18. The working systems engineer will thus always have 

to mix extensional and intentional formalisms, according to their relative “human” costs. A good 

system specification is therefore a specification that shall mix on one hand behavioral or structural 

descriptions in the line of Definition 0.1 and Definition 0.2 and on the other hand requirements in the 

line of Definition 0.3 and Definition 0.4. 

Note finally that requirements will also provide us the first column (expected features) of the CESAM 

systems architecting matrix (see section 2.5) 19. 

0.2 CESAM: a Framework focused on Complex Integrated Systems 

A second key point to stress is that CESAMES Systems Architecting Method (CESAM) is fundamentally 

a complex integrated systems-oriented framework. This means that CESAM is especially dedicated 

and adapted to the architecting and modelling of complex systems, that is to say – in equivalent 

terms – of non-homogeneous systems which result from an integration process.  

To be more specific, let us first recall that system integration is the fundamental mechanism20 that 

allows in practice to build a new system from other smaller systems (typically of hardware, software 

                                                           
17 A good system requirement shall indeed always be unambiguous which will never be achieved when trying to express a 
formal requirement in natural language.  

18 The fact that a system behaves according to a given state machine is for instance easier to state by explicitly describing 
the concerned state machine, which gives rise to a single systemic view. Using requirements would contrarily require to 
define one logical formula per transition – stating typically that when the system is in state q and event e occurs, it shall 
pass in state q’ – which would give rise to N requirements where N is the number of involved transitions, which is clearly 
much more complicated than the first formalism. Conversely a safety property can usually be stated using just one unique 
requirement, but would give rise to many behavioral descriptions if one would like to express it in that other way.  

19 As a matter of fact, the systems architecture paradigm can also be expressed using the formalism of requirements. Any 
systems architecture problem can indeed be stated as the research of a system S that satisfy a set of requirements 
associated with the environment of S. As an immediate consequence of this genericity, the generic structure of a system 
provided by CESAM framework naturally reflects in the generic structure of the systems architecture process, which is the 
core property on which the CESAM systems architecting method relies. 
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or “humanware” nature), by organizing them so that the integrated system can accomplish – within a 

given environment – its missions (see for instance Figure 5). For the sake of completeness, a more 

formal definition of this key mechanism is provided below. 

Definition 0.5 – Integration – Let S1, … , SN be a set of N (formal) systems. One says then that a 

(formal) system S is the result of the integration of these systems if there exists on one side a 

(formal) system C obtained by composition of S1, …, SN and on the other side dual abstraction and 

concretization operators21 that allow to express: 

 the system S as an abstraction of the system C, 

 the system C as a concretization of the system S. 

 

 

 

 

 

 

 

 

Figure 4 – Formal integration of formal systems 

This somewhat technical definition has for fundamental purpose to position integration as a different 

mechanism from a simple composition of models in order to try to capture structurally emergence in 

our approach. The previous Definition 0.5 indeed clearly shows that the description of an integrated 

high level system, obtained through interconnection with other systems, requires having: 

 models of each system contributing to the integrated high level system, 

 a new high level model, specific to that integrated system.  

In other words, the mere knowledge of the models of the components of a system is never sufficient 

to model this system!  This modelling postulate can be seen as the direct translation of the universal 

phenomenon of emergence which is always a mechanical consequence of integration: an integrated 

                                                                                                                                                                                     
20 Integration is thus an operator between systems that maps a series of systems into another new system. It is interesting 
to point out that most of the existing system “definitions” which can be found in the systems engineering literature (see for 
instance [30], [42], [44], [57], [61], [62], [71] or [74]) are defining systems as the result of an application of the integration 
operator. From a mathematical perspective, this gives unfortunately rise to inconsistent definitions since the set on which 
acts this operator is never defined. However all these “definitions” are clearly expressing a real pragmatic dimension of all 
systems, which is rigorously captured in our framework by the notion of integration as provided in Definition 0. 

21 In order to avoid mathematical technicity, we will not define here the notions of abstraction and concretization that shall 
be considered in the meaning of the theory of abstract interpretation (see for instance [25] for more details on this topic). 
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system will indeed always have emerging properties, that is to say specific properties that cannot be 

neither found in its components, nor deduced from the properties of its components.  

This emergence postulate can be observed on all simple integrated systems of day-to-day life. Let us 

consider for instance a wall formed solely of bricks (without mortar to bind them) for the sake of 

simplicity. A simple systemic model of a brick can then be characterized by: 

 a functional behavior consisting on one hand in providing reaction forces when mechanical 

action forces are acting on the brick and on the other hand in absorbing the light rays, 

 an internal behavior provided by three invariant states “length, width, height”.   

By composing such brick models, a wall will just be a network of bricks connected by mechanical 

action/reaction forces. But it will be difficult to get anything else from such a wall than a resulting 

functional behavior consisting in absorbing the rays of light. This is however clearly not the usual 

behavior of a wall, since we want to make account the existing holes in the walls (for the windows) 

that should just let the light pass! Note also that it is difficult – and probably vain – to try to express 

the form of a wall (which is one of its typical internal state) depending on the lengths, widths and 

heights of the bricks that compose it. All these facts call for the obvious need of creating a dedicated 

systemic model, more abstract, to specifically model a wall.  

 

Figure 5 – Example of an integrated system: the used electronic toothbrush 

These considerations may appear to be common sense, if not naive, but we unfortunately noticed 

that their consequences are usually not understood, which directly causes lots of non-quality issues 

as observed on many modern complex engineered systems. Most engineers & managers indeed still 

continue thinking that mastering the components of an integrated system is sufficient to master the 

system as a whole. However the very nature of the integration mechanism imposes not to have only 

components responsible when one has to design an integrated system: it is key to also have 

somebody specifically in charge of the integrative high-level model of the considered system, that is 

to say a systems architect, who does unfortunately often not exist22 in most industrial organizations, 

as strange it may sounds when one is aware of the underlying systemic fundamentals! 

                                                           
22  As a consequence, high level models of integrated systems are also often non-existent in practice … 
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Note also that emergence obliges to privilege a top-down design strategy – rather than a bottom-up 

approach23 – when one deals with integrated systems. As a matter of fact, it is indeed not possible to 

predict the emergent properties that result from integration: any bottom-up design strategy will thus 

statistically create numerous undesirable emergent properties that will be difficult to master. In such 

a context, the only possible efficient design strategy is to start by imposing the expected properties 

of the integrated system, and then deriving from them the properties required from its components, 

which naturally lead to a top-down design strategy.       

Finally, note that the integration mechanism naturally hierarchizes systems, while giving a recursive 

dimension to systemic analysis. Engineered systems are indeed obtained in practice by a number of 

successive systems integrations: each integrated system thus generates in this way an integration 

hierarchy, which is also an abstraction hierarchy due to the nature of integration, called the systemic 

hierarchy of the initial system. This allows in particular to speak about the system, sub-systems, sub-

systems, etc. levels (that are also called sometimes “layers” or “tiers”) of any integrated system. 

0.3 CESAM: a Collaboration-oriented Architecting Framework 

CESAM is however not only a mathematically sound system modeling framework, specifically focused 

on complex integrated systems. It is also an architecting framework which means that it is intended 

to efficiently support all the design decisions that a systems architect needs to regularly take during a 

complex system prototyping or development project. We must recall in this matter that modeling is 

not an end in itself24, but just a tool for architecting which is the key design process addressed by the 

CESAM framework. Architecting here means finding a solution that fulfills a series of external needs 

and constraints. It can be seen as an optimization process which has to construct and select the 

“best” system among a series of possibilities. Choice is thus intrinsic to that activity. Being able to 

make the “good” choices in a rational way is thus always key in any system design project. This is 

exactly the purpose of the CESAM framework which provides to the working systems architect a 

number of systemic views as a support to collaborative architectural decisions. 

It is indeed important to remember that a technical system does never exist alone and that it cannot 

be designed independently of the people who are engineering it. A “good“ systems architecture is in 

particular always an architecture that all stakeholders do share. The first job of any systems architect 

(by applying the core principles of systems architecting to the engineering system to whom he/she 

belongs) shall thus always be to understand and to identify the organizational architecture in which a 

given system development takes place: the technical architecture of the system under design is 

indeed highly correlated to that organizational architecture (we refer to section 1.1 for more details 

on this important topic). This explains why a systems architect must manage the two following types 

of activities which are of very different nature: 

 On one hand, technical activities fundamentally centered on the definition of high level 

global system models, making explicit interfaces between all components of a system, 

 On the second hand, facilitation activities centered on the construction of convergence on 

these models, creating a common vision between all stakeholders of the system. 

                                                           
23 This is unfortunately still the most common design strategy in the industry for integrated systems … 

24 Which most systems modelers do unfortunately forget! 
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Figure 6 illustrates these two kinds of systems architecting activities which all rely on system models. 

The initial version (initial version 0) of the system architecture presented in that figure is the result of 

a technical activity, when the second version (shared version 1) is the result of a facilitation activity. It 

is thus quite interesting to see the differences between these two system views: this illustrates the 

value brought by facilitation which is crucial for collaboratively constructing robust systems. 

 

 

Figure 6 – Using models to converge on the same vision of a system 

System models are thus key for ensuring a collaboration of quality which is mandatory in the context 

of complex integrated systems development (as we will see more in details in section 1.5). In these 

matters, the basic tool for managing collaboration and creating architectural convergence is the 

collaborative systems architecture workshop. We will now quickly sketch its mode of operation in 

order to better understand the “human” dimension of systems architecting.  

The principle of such a workshop is quite simple since it consists “merely” in putting in the same 

place all stakeholders25  that must convergence on a given architectural solution and submitting then 

them a first version of the intended system architecture. This is indeed key to obtain stable systems 

architectures. The groundwork for a collaborative systems architecture workshop is then to discuss 

and collaboratively modify the proposed system architecture, so that the final architecture, as 

resulting from such a process26, becomes a collective asset.  

                                                           
25 This means that these stakeholders were comprehensively and correctly identified, which in itself is a difficult exercise 
with multiple traps. Moreover, it can also easily be understood that it is difficult to carry out convergence with 150 people! 
The effective implementation of a collaborative workshop also presupposes that we previously achieved an organizational 
architecture analysis, which sufficiently abstracted the "field" of a given system architecture by only identifying a limited 
number (typically no more than 15) of top level players, truly representative of the entire organizational scope of the target 
system, with whom we shall manage the required convergence work.  

26 To carry out such a work in practice, a simple way to proceed is typically to make visible the system model to share by 
printing the various architectural views on large A0 posters. One can then easily collectively discuss and change an initial 
system architecture by directly annotating these architectural diagrams (cf. Figure 7 for an illustration of this method). Note 
that the systems architect must manage that “live” modification process in order to permanently guarantee that the 
proposed changes have the consent of all participants and do not lead to sub-optimality at system level. 
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This method naturally leads to shared visions which are usually deeply engaging all involved actors. 

Note that the systems architect has a key role in this process since he/she must always ensure that 

the system architecture, on which all stakeholders converge, remains a satisfactory response with 

respect to all needs it shall take into account.  

However this modus operandi assumes a key prerequisite, that is to say that all stakeholders of the 

workshop have a common systemic representation language. In other terms, the meaning of all 

system descriptions shall be the same for all participants, which is usually not the case. It is therefore 

highly recommended to start a collaborative systems architecture workshop by sharing with the 

participants the semantics of each of systemic representation that will be used27.  

Once established these core bases, the work of convergence towards a shared architecture can be 

attacked, starting with a collective analysis of the proposed initial architecture. We then often see in 

practice that the first problems which occur are again syntactical problems, due to the fact that the 

vocabulary that is used to describe the elements of an architecture is not necessarily shared among 

its stakeholders! To solve this other recurrent issue, it can for instance be helpful to also share with 

all participants a glossary of key technical terms, in order to be sure that these terms have exactly the 

same meaning for everybody. 

 

 

Figure 7 – Initial and final models as managed during a collaborative systems architecture workshop 

Once these barriers are removed, we can consider that we have a solid base to attack the technical 

activities, strictly speaking. The work consists then in discussing the proposed system architecture 

and modifying it collectively, if necessary (see Figure 7), so that the final architecture resulting from 

the exchanges is shared by all at the workshop’s end. Note that it is also mandatory to have an 

arbitration mechanism which will handle all the disagreement points, if any, for decision-making (in 

which case, a new loop with stakeholders may be needed to explain them the definitive choices).  

As one can see here, the systems architecting technical process shall always be deeply integrated 

into a “human” engineering process without which no shared and no “humanely” robust systems 

                                                           
27 This is again one of the important use and purpose of CESAM framework.  
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architectures would emerge (which by the way is often a sine qua non condition for them to also be 

technically robust).  

0.4 CESAM: a Business-oriented Framework 

Let us finally also stress on the fact that CESAM is also a business-oriented framework. As already 

pointed out, the CESAM framework was indeed used in many applications. In order to contribute to 

the quality increasing of systems projects, which is a key issue for our modern societies, we thus do 

want to share with the system community a part of that quite important practical experience.   

 

 

Figure 8 – Tentative structure of the CESAM frameworks 

The CESAM framework is therefore intended to be organized in two layers: 

 a generic layer, consisting of a generic systems architecting framework whose first part is 

presented in the current pocket guide, 

 a specific layer, consisting of a number of specific systems architecting methods & systems 

architecture views per main application area (aeronautics, automotive, enterprise, etc.). 

We do plan to progressively publish in the following decade these different parts of the CESAMES 

systems architecting body of knowledge. 

This strategy plans to offer to all systems architects & engineers both a sound, complete and robust 

method for architecting complex integrated systems, but also to provide them a series of domain-

specific systems architecting methods & systems architecture views. These elements, which will be 

already expressed and/or formalized within the CESAM framework, will be starting points to ease 

their systems architecting activities (see Figure 9 for an illustration of what could be such a starting 
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point in the aircraft industry28). It is indeed much easier to deform an existing system architecture in 

order to adapt it to a series of new needs, rather than constructing it from scratch. 

 

 

Figure 9 – Example of a standard functional / constructional architecture for an aircraft 

 

                                                           
28 The architecture presented in Figure 9 is a constructional high level architecture (blue boxes are modeling components) 
of an aircraft – an Airbus A320 here – aligned with the underlying functional architecture (grey zones are modeling 
functional domains). It was constructed on the basis of operational pilot documentation, freely available on the Internet.  
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Chapter 1 – Why Architecting Systems?  

1.1 Product and Project Systems 

Before going further, we need first to introduce a distinction that will be fundamental to understand 

better both what is systems architecting and how to read many classical engineering issues. It indeed 

appears that all engineered systems are always involving two kinds of systems (see Figure 10): 

 the first one is clearly the product system, i.e. the integrated hardware and software29 object 

which is under engineering in order to be finally constructed and put in service, 

 the second one is the project system, that is to say the engineering organization (or in other 

terms the engineers) who is designing and developing the product system.  

These two types of systems are of quite different nature: the product system is usually a technical-

dominant system when the project system is clearly a human-dominant system. However as shown 

in Figure 10, they are highly and permanently coupled during all the design & development phases of 

the product system: the project system typically monitors the implementation status of the product 

system through adapted implementation actions that are changing this implementation status.  

 

 

Figure 10 – Product versus project systems 

The product / project distinction does seem very simple. However it appears in practice that most of 

engineers are thinking in terms of project activities realization and not of product characteristics 

achievement. Many engineering issues are thus coming from the fact that system development 

                                                           
29 One may also possibly include a “humanware” dimension into a product if one must put a person, a group of persons or 
even an organization within the scope of the system under engineering. 
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project are often too project system-oriented and not enough product system-focused. One must 

indeed understand that there are two totally different ways of managing a system development: 

 Management mode 1 – project system management: this first management mode – also the 

most common – groups all classical project management activities where a system develop-

ment project is followed by means of a project agenda and a task achievement monitoring. 

 Management mode 2 – product system management: this other management mode intends 

to monitor the progressive achievement of the desired product system, which is followed by 

means of systems architectural views. 

These two management modes shall of course not be opposed, since they are fully complimentary. A 

key good practice, on which systems architecting relies, claims in particular that these two modes of 

management – respectively based on a project agenda and on systems architectural views – are both 

mandatory in the context of complex systems development (see sections 1.2 and 1.3 below).  

The project system management mode is indeed not sufficient for ensuring the good achievement of 

the product system quality & performance when such a product became complex. One unfortunately 

observes in practice (see next section) too many situations where complexity is so high that project 

teams are not able anymore to master their product. These teams are thus discovering too late that 

they will never deliver the expected product within its cost, delay, quality and/or performance limits. 

The key motivation of systems architecting is just to provide to these engineering teams new product 

system-oriented tools to better master their complex integrated system development30. 

 Product system problems  

o Product problem 1 – The product system model does not capture reality    

 Typical issue: the system design is based on a model which does not match with reality 

o Product problem 2 – The product system has undesirable emergent properties  

 Typical issue: a complex integrated system has unexpected and/or undesired emerging 

properties, coming from a local problem that has global consequences 

 Project system problems 

o  Project problem 1 – The project system has integration issues 

 Typical issue: the engineering of the system is not done in a collaborative way 

o Project problem 2 – The project system diverts the product mission 

 Typical issue: the project forgets the mission of the product 

Table 1 – Typical examples of product and project issues 

Note also finally that most of engineering issues occurring with complex systems can be classified 

into two categories, according to the product/project distinction, that is to say on one hand, product 

problems, referring to purely architectural flaws leading to a bad design of the product, and on the 

                                                           
30 As a good practice, each systems architect shall always try to quickly understand whether a given system development 
project is only project-oriented and not project/product-balanced. This can be done by analyzing the words used within the 
project meetings. If the project team speaks only of agenda, milestones, activities, contractual relationships, deliverables, 
etc., without any reference to the underlying product, one can easily deduce a project-orientation for the project. This is 
statistically an important risk for the project since it does not fully master the product it is developing.   
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other hand, project problems, referring to organizational issues leading to a bad functioning of the 

project. Table 13 above provides an overview of typical such problems. All details on examples and 

analyzes illustrating these different complex systems issues can be found in Appendix B.  

1.2 The Complexity Threshold  

At this stage, it is now time to explain more precisely what “systems complexity” is and how it is 

connected with systems architecting. An element of answer is provided by the Constructive Systems 

Engineering Cost Model (COSYSMO; see for instance [79] or [84]). This cost model – which extends to 

general industrial systems a classical model well known for information systems since the 1980’s31 – 

is based on an integration complexity measure of a product system32 that recursively measures33 the 

number of external & internal product interfaces within a given industrial system.  

The COSYSMO cost model connects then the effort of engineering, expressed in men-months, 

required developing a given product system (denoted Effort in the below equation) to this intrinsic 

measure of complexity (denoted Complexity in the below equation), by the following relationship34: 

Effort = A x Complexity1+B, 

Equation 1 – Relationship between engineering effort and systems complexity according to COSYSMO 

where, on one hand, A is a constant, depending on the size and performance35 of the project system, 

and where, on the other hand, B is a statistic scale factor only related to the product system, than 

can move from 0.05 for simple systems up to 0.5 for large systems.  

The key issue to point out here is the non-linear nature of Equation 1 which induces a largely non-

intuitive relation between integration complexity and engineering effort, and thus system delivery 

delay which is directly connected to such an effort36. It is indeed important to see that integration 

complexity is proportional to the square N2 in the number N of components of a given system37. As a 

direct consequence, the engineering effort is then proportional to N3, where N stands again for the 

number of component of the underlying system, when a large size system is involved, due to the 1.5 

exponent in Equation 1 in this situation. In more familiar terms, this means that the engineering effort 

                                                           
31 That is to say the Construction Cost Model (COCOMO) developed by Barry Boehm in 1981 (see [1], [19] or [83]). This 
other model expresses the effort for constructing an information system (in men-months) in terms of function points, which 
was aimed to be an intrinsic complexity measure of an information system, independent of the programming language.  

32 In this matter, note also that the notion of “complex system” cannot be formally defined. One can however define the 
notion of “complexity” for a system, as introduced in this section. This complexity definition will then allow discussing 
whether a given system is of low, medium or high complexity – but not whether it is complex or not, which is a typical false 
debate for us, even if many people like to discuss on the difference between complicated and complex, which is irrelevant 
from a purely scientific perspective which can only deal with measured complexity – or eliciting the connection between 
engineering effort and complexity as provided by the COSYSMO model that we presented here.   

33 The exact complexity measure provided by COSYSMO is more complicated than that. However the approximation that we 
are making here, for the sake of simplicity, is totally valid.  

34 Such a model is a statistical model, constructed on the basis of the analysis of several real engineering projects. 

35 A is 1.0 by default, but multiplicatively grows depending on product or project parameters such as number of critical 
algorithms, requirements and operational scenarios to manage, requirements and architecture understanding, expected 
level of service, migration and technological risks, project team experience, stakeholders cohesion, etc. 

36 Typical relation is Delay = 2.5 x Effort1/3, where Delay and Effort and respectively expressed in months and men-months. 
We refer to the appendix of [70] for a rational explanation of that apparently empirical law discovered by Boehm [19]. 

37 When a system has N components, the number of its internal interfaces is indeed N2/2 on the average. 



26 

is multiplied by 8 (resp. 1,000) if the number of components of a system is multiplied by 2 (resp. 10), 

with a project team who would be able to easily absorb the increasing of complexity38.  

As a result of that complexity laws, the engineering effort in a system development project will be 

quickly too important, when complexity grows, for being anymore handled by a single person. In 

other terms, there will be always a cognitive rupture moment where complexity is too high to be any 

longer efficiently individually mastered by a systems architect or engineer. This rupture point is of 

course difficult to formally define and it depends on the system maturity of a given industry39, but as 

far as we could regularly see in practice, it can always pragmatically be observed when complex 

systems designers began to express strong cognitive difficulties40.    

 

 

Figure 11 – Project effort and integration complexity relationship 

The consequence of this situation is that we can now distinguish two types of engineering, depending 

whether the complexity of a given system lies before or after the complexity rupture zone that we 

pointed out (see Figure 11). The first type of engineering, working perfectly well for low complexity 

systems, is just what we will here call “classical engineering”: it is usually based, on one hand, on 

waterfall design project approaches, induced by a separation of engineering organizations by domain 

specialties, and, on the other hand, on implicit systems models where key technical knowledge only 

lies in the brains of a limited number of technical experts.  

Such engineering unfortunately do not work anymore when the systems complexity threshold that 

we pointed out, is crossed. One arrives then in a domain where transversal collaboration becomes 

                                                           
38 This probably never occurs, which means that the engineering effort increasing will be probably much more that the 
simple impact of the single complexity parameter, due to the A factor in Equation 1 that will probably also heavily evolve in 
such complex situations.  

39 The system maturity of an industry may evolve among time due to its industrial cycles (see Case study 1). 

40 Typical verbatims in such complexity situations are: “it is impossible to take a reasoned decision”, “we have the feeling of 
not mastering anymore anything”, “we are spending all our time to understand our problems and then there is not more 
time to solve them”, “we are fighting against a more and more increasing pressure of our environment”, “cost and delays 
are exploding and we cannot do anything to avoid it”… 
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key in order to complete individual expertise (which is of course still mandatory) and where explicit 

systems models are now mandatory due the fact that it will be basically impossible to handle 

implicitly the complexity one is facing. In other words, one enters in “systems engineering” which is 

the engineering approach dedicated to integrative complexity mastering, that we will discuss more in 

details in the two next sections. 

 

System Maturity Cycles: the European Space Industry Case 
 
The European space industry is a sector were systems complexity is well mastered, due to a 
very early introduction of systems engineering that goes back to the 1960’s when Europe 
decided to construct its own spatial capability. Systems engineering was then chosen as a 
key tool to reach this objective. It took afterwards two to three decades to totally master 
this practice which is today completely integrated within all engineering processes.  

In the 1990’s, the failure of the very first Ariane 5 launch (cf. Appendix B for more details on 
that case) lead however to a deep evolution of the systems engineering processes. The issue 
was to better integrate and monitor the emergence of critical real-time embedded software 
with its difficult associated safety issues. A new industrial cycle began when these difficulties 
were mastered, which quite interestingly is finishing nowadays due to the growing pressure 
of the new low-cost competitors like SpaceX or Blue Origin.  

The European space industry indeed totally reshaped with the creation – announced in June 
2016 – of a new company – Airbus Safran Launchers – that integrates vertically two key 
players. It is too early to tell how will probably evolve again systems engineering in that 
context, but there is no doubt that this practice will play a key role in the success of the new 
challenges that the European space industry will have to face in the near future. 

 

Case study 1 – System maturity cycles: the European space industry case 

As a matter of fact, one shall finally also notice that integration complexity is increasing in most areas 

due to the impact of many new technological paradigms. The replacement of analogical control by 

numerical control or the new electrical architecture are for instance deep trends, which are regularly 

creating new software, electronical or electrical interfaces between components within numerous 

industrial systems, hence by the same way, mechanically increasing the integration complexity of the 

corresponding systems. Most of industries will thus cross the complexity threshold along the lifecycle 

of their products and thus be obliged to deal with systems engineering and architecting, if they want 

to be able to efficiently face this challenge. 

1.3 Addressing Systems Architecting becomes Key 

Due to that complexity threshold as presented in section 1.2, which is – in our understanding – the 

root cause of most engineering issues observed in complex systems development (we here refer to 

Appendix B for more details), addressing systems architecting becomes therefore key for engineering 

organizations that are dealing with complex systems. These organizations are indeed confronted to 

the need of working efficiently in transversal mode, due to the core integrative nature of the systems 

that they are designing and developing. 
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This is exactly the context where systems architecting will bring all its value. This discipline allows 

reasoning about hardware & software components (technical dimension) and human factors (human 

dimension) related to a given system, both in a unified framework and in subsidiary with all existing 

disciplines & engineering fields (see Figure 12). To achieve this goal, the fundamental principle on 

which systems architecting relies, is a logical vision of engineering brought by systemics. As one can 

easily understand, it is indeed merely impossible to strongly consolidate all formalisms that are used 

to model and work with the different components of a heterogeneous system41. Systems architecting 

thus proposes a purely logical approach to federate all these “local” formalisms, rather than trying to 

consolidate them in a unique global formalism.  

The main idea here is to simply use logic42 as a pivot language in order to be able to work in the same 

way with all hardware, software and “humanware”-oriented disciplines, involved in a given complex 

system design & development context. Each discipline can indeed easily formulate its requirements, 

constraints, findings or models using the universal language provided by logical predicates, which are 

formally Boolean functions telling us whether a given property is satisfied or not depending on the 

values of its entries (see [91]). In a system context, a logical predicate is thus nothing more than a 

statement that may true or false for a given system. A typical reasoning in systems architecting will 

thus be based on logical predicates associated, on one hand with the whole considered system and 

on the other hand with the different involved components and disciplines43.   

 

Figure 12 – The integrative & collaborative dimension of systems architecting 

                                                           
41 Electromagnetism or fluid mechanics are for instance based on partial differential formalisms such as Maxwell or Navier-
Stokes equations, when signal processing relies on a distinction between time and frequency domains, leading to Fourier or 
Z transforms formalisms, which have all typically nothing to do with the logical and discrete formalisms used in information 
technology. Human factors are moreover of a totally different nature, without any strong mathematical background, but 
they shall also be included in the global picture. We thus do not believe to the existence of a “universal theory of systems” 
that could federate all these different formalisms since they are analyzing the world in lots of mutually incompatible ways. 
In the best of our knowledge, systems architecting remains thus the only tool to consolidate all these points of view.   

42 In the mathematical meaning of that term (see for instance [12]).  

43 Imagine for instance that thermic experts tell us that predicate P1 = “the engine works well only when refrigerating fluid 
temperature is less than 30°C” is true, when we know through a discussion with fluid mechanics division the that predicate 
P2 = “the refrigerating fluid temperature can be over 30°C when pressure is low”. Somebody who has the global vision on 
that two domains can then easily deduce that P3 = “the engine may not work correctly when pressure is low” is true, since 

it is a logical consequence from P1 and P2, formally P1  P2  P3 (where the  symbol means AND). This is typically a (here 
quite simple) systems architecting type of (logical) reasoning. 
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As one can see, there is therefore absolutely nothing magic in the promise of systems architecting of 

proposing a unified framework for working with all systems dimensions, as a simple consequence of 

the universality of logic44! One may also notice that systems architecting can thus be fundamentally 

seen as an observational modeling approach45: the construction of a system model – in the meaning 

of systems architecting – is indeed the result of the observation of all components and engineering 

domains involved in the considered system and of the federation of all these observations in a 

unique logical model of system level.   

Last, but not least, it is important to also point out that systems architecting always integrates a 

strong collaborative dimension: it is indeed simply not possible to construct a system model without 

implying all people who are representing the different involved system components and engineering 

domains, as soon as one wants to get a realistic model46. Moreover sharing a system model is also a 

key good practice for ensuring its robustness. Collaboration is thus at the very center of any systems 

architecting approach (cf. Figure 12, but also section 1.5 for more details). 

All these elements allow easily understanding that systems architecting is the discipline by excellence 

which is required to efficiently address systems integration issues. At this point, it may thus be useful 

to position precisely systems architecting within systems engineering (see Figure 13).  

To this purpose, let us first recall that systems engineering is nothing else than systemics applied to 

engineering. Systemics47 here refers to the discipline that deals with – formal and real – systems. It 

provides holistic vision and holistic analysis methods (see Chapter 0 and [96]), integrating crosswise 

all dimensions of a given topic. Systemics applies to many application domains such as archaeology48, 

biology49, city planning50, enterprise51 or psychology52 to provide few non-exhaustive examples. From 

a systemics perspective, systems engineering is thus just another application domain.  

                                                           
44 This probably also explains why systems architecting is so difficult to penetrate in practice in engineering organizations. 
Most of engineers are indeed very well trained in analysis and control theory, but absolutely not in logic which happens to 
be the core fundamental on which relies systems architecting. It is really a pity if one remembers that logic is probably the 
oldest scientific discipline in the world, which can be traced back to Aristoteles in the 4th century before Christ (see [84]). 

45 A typical example of observational model is Ptolemeous epicyclic system which was a purely geometric model, used from 
the 3rd century before Christ up to Copernic in the 16th century, to explain the movements and variations in speed and 
direction of the apparent motion of the Moon, Sun and visible planets (cf. [65] or [85]). This model fitted perfectly with the 
observations since it was exactly constructed on that basis. It was also predictive, in particular with respect to phenomena 
such as the Moon and Sun eclipses. But it is nowadays considered as completely false from a physical perspective. This 
example illustrates what is expected from an observational model: precision and prediction, but not necessarily truth...  

46 The best way to construct an unrealistic system model is indeed probably to construct it alone in its corner…  

47 Systemics can be traced back to the 50’s with the seminal work of H. Simon published in 1962 (cf. [75]). One usually also 
cite von Bertalanffy, who tried – but without being terribly convincing – to construct a “general systems theory” (cf. [80]).  

48 We refer in this matter to Case study 2. 

49 Systems biology defines itself as the computational and mathematical modeling of complex biological systems and as an 
emerging engineering approach applied to biological scientific research (see [93]). Systems biology is a biology-based inter-
disciplinary field of study that focuses on complex interactions within biological systems, using especially a holistic approach 
applied to biological research (holism instead of the more traditional reductionism). 

50 Systemics applied in city planning means considering all the many different dimensions of a city (economy, energy supply, 
entertainment, people welfare, traffic, water distribution, waste management, etc.) when taking an urbanistic decision. Due 
to the numerous interactions between the sub-systems of an urban system, it is indeed quite easy to take an optimal local 
decision which is globally under-optimal (e.g. developing public transportation in an area to resorb local traffic congestion, 
but that as a side-effect is increasing the value of the considered area, thus bringing middle class people in that area and 
moving population, and at the very end, creating new traffic jams since the new inhabitants had two cars in average, one 
for each person in a husband-wife couple). One thus understands that systemic models are of interest for urban design.   
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This fact must of course not make us forget that systems engineering (cf. [94] for more details) also 

has its own tradition that goes back to the 1950’s, with first textbooks in the 1960’s (see [96]) and its 

first industrial processes formalization with the seminal NASA systems engineering handbook in the 

1970’s (see [66] for current edition). Many other textbooks (such as [9], [10], [15], [30], [47], [57], 

[61], [62], [71], [74], [78]) and industrial standards (such as [5], [42] or [44]) were then constructed in 

the line of that initial works. More recently, the International Council on Systems Engineering 

(INCOSE) emerged in the 1990’s. It is currently federating and developing the domain at international 

level (see for instance [42] for the INCOSE systems engineering handbook). 

 

Systemics applied to Archaeology: the Cretan Case 
 
A puzzling example of systemics applied to archaeology is the recent understanding of how 
the Cretan civilization disappeared suddenly in the 15th century BC (cf. [7] or [67]).  

The story started when the study of the Thera site on Crete revealed enigmatic geological 
strata: they were indeed identified by an expert in hydrology like a riverbed, but no river 
could be located there for both geological (due to the geology of the site) and archaeological 
reasons (due to the presence of a human habitat at the same place). Moreover the 
biological analysis of these strata highlighted then several marine fossils of high sea origin, 
although sea was quite far away from the site where the strata were.  

By putting together their archaeological, geological, hydrological and biological data and by 
crossing them with those from other Cretan sites, archaeologists gradually understood that 
they discovered the last traces of a tsunami which destroyed the city they were studying.  

This hypothesis was subsequently validated by checking with Carbon 14 dating techniques 
that the similar observations made on other archaeological sites took place in the same time 
period! Last but not least, volcanologists were involved in order to identify the possible 
origin of that tsunami, which was localized in Santorini. Oceanographers constructed then 
an oceanographic model to demonstrate – successfully – the propagation of a tsunami 
between Santorini and Crete, which are far away from around 200 kilometers.  

As one can see, the combination of many disciplines was necessary to globally understand 
an apparently local phenomenon. 

 

Case study 2 – Systemics applied to archaeology: the Cretan case 

Following INCOSE (see again [42]), systems engineering defines in particular as “an interdisciplinary 

approach and means to enable the realization of successful systems. It focuses on defining customer 

needs and required functionality early in the development cycle, documenting requirements, then 

proceeding with design synthesis and system validation while considering the complete problem 

                                                                                                                                                                                     
51 Systems approach applied to enterprise typically gives rise to enterprise architecture frameworks (see [86]) such as for 

instance TOGAF (cf. [77]) or our own (see Section 0.4). 

52 Systems psychology is a branch of both theoretical psychology and applied psychology that studies human behavior and 
experience in complex systems. Individuals are considered within groups as systems (see for instance [95]). A consequence 
of such an approach is that one cannot cure an individual who has psychological or sociological problems without trying to 
understand the groups to whom he/she belongs. Root causes of his/her problems may indeed be found at group level and 
shall thus be addressed at that level and not at the individual level. For instance, if an alcoholic father beats his child, one 
must typically understand the cause of his alcoholism and tackle it, rather than taking the child out of his/her family. 
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(operations, performance, test, manufacturing, cost & schedule, training & support, disposal)”. When 

one analyses more precisely the systems engineering processes, one can however decompose them 

naturally according to a product/project distinction as discussed in section 1.1, that is to say in the 

following two types of activities of quite different nature: 

 Project-oriented activities, such as systems projects planning, follow up and monitoring, 

engineering referential and configuration management, reporting and quality, which may be 

seen as systems project management, 

 Product-oriented activities, such as requirements engineering, operational, functional and 

constructional architecting, trade-off and safety analyses, verification & validation, which do 

cover exactly the scope of systems architecting.  

In that perspective, systems engineering can be seen as the union of systems project management 

and systems architecting, which can thus also be analyzed as the core part of systems engineering, 

dedicated to the design & construction of robust systems models. System architecting shall thus be 

seen as the discipline synthesizing the methods and the tools which allow an exhaustive & coherent 

modeling of a system (in its triple operational, functional & constructional dimensions) in order to 

manage it efficiently during its lifecycle (design, test, deployment, maintenance, …)53. 

 
 

 

Figure 13 – Relative position of systems engineering and systems architecture within systemics 

1.4 The Value of Systems Architecting 

To complete our discussion on systems architecting, let us now focus on the value brought by this 

discipline, which was in particular quite well analyzed by Honour in [41]. The key point to understand 

is that the systems engineering approach in which systems architecting takes place, mainly consists in 

redistributing the engineering effort towards upstream phases of the project, in a “definition” phase, 

in order anticipating design risks as early as possible within a systems development project.  

                                                           
53 Other alternatives definitions are proposed by 1) ANSI / IEEE 1471-2000 [6]: systems architecting is the process of 
describing the structure of a system, given by its components and its internal interfaces, and the relationships of the 
components of the system with its environment among time (i.e. starting from the design and including all possible 
evolutions of the system); 2)  Wikipedia [92]: systems architecting is the process of defining a set of representations of an 
existing (or to be created) system, i.e. of its components (hard-ware, software, “humanware”, functions, roles, procedures, 
etc.), of the relationships  that exist between these components and of the rules governing these relationships. 
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Figure 14 below, extracted from [41], perfectly illustrates this paradigm, where more time is initially 

spent better understanding the system to develop and thus reducing the project risks in the future, 

compared to a traditional design. Such an approach strongly relies on systems architecting since the 

“definition” phase will typically contain a strong part dedicated to the construction of a systems 

architecture file that will allow to analyze the system under design in all its dimensions54 , the other 

part being devoted to the project planning. In that perspective, systems architecting can thus be seen 

as a risk management good practice in complex systems development contexts.  

 

 

Figure 14 – Systems Architecting as a risk management practice55 

Many evidences support this point of view (see for instance again [41] for many concrete examples). 

Among them, we will consider a quite interesting one which comes from NASA. In 1992, the financial 

controlling office of NASA indeed analyzed 32 major spatial programs conducted during between 

1970 and 1990, comparing the final budget overrun with the budget ratio which was allocated to the 

initial “definition” phase, upstream the Preliminary Design Review (PDR), which does especially 

include the initial systems architecting analyses, as discussed above. The finding of that financial 

analysis was quite clear: budget overrun was indeed statistically inversely proportional to the budget 

dedicated to the definition phase. More precisely, it could be seen that budgets more or less always 

at least double when the definition phase is weak and that the optimal ratio to dedicate to the 

definition phase seems to be around 15 % of the global budget (see Figure 15 below). Consequently, 

this probably means that, to cover optimally product & project risks, a complex systems manager 

should allocate around 5 % of its global budget to systems architecting, strictly speaking, with 

another 10 % being reserved for project-oriented initiation and preparation activities. 

 
One can thus understand that systems architecting is a key tool for mastering systems design and 

development projects in the respect of their quality, cost, delay and performance constraints (QCDP), 

as soon as one deals with complex systems produced by the integration of many technical systems 

(hardware & software) and human systems  (people & organizations). We shall finally recall some key 

principles56 provided by systems architecting that allow achieving this objective: 

                                                           
54 Typically such as environment, lifecycle, use cases, operational scenarios needs, functional modes, functions, functional 
dynamics, functional requirements, configurations, components, constructional requirements, constructional dynamics, 
critical events, dysfonctional modes and behaviors, verification & validation. 

55 This figure was reproduced from [41]. 

56 That one shall always have in mind during a systems design & development project. 
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 Provide simple, global, integrated and shared visions of a system: “to be simple” and 

capture completely all dimensions of a given problem in complex environments, which does 

not mean “to be simplistic”, is always very difficult… 

 First, think about needs and not about solutions: this last point being unfortunately the 

common rule in most of systems development projects. One shall thus remember that the 

“customers” of a system project shall fundamentally feed the systems architecting process. 

 Sort out all “spaghettis” in a system design: in order to avoid mixing everything (objectives, 

functions, technical constraints, etc.) and confusing ourselves while confusing others which 

are also again very common bad practices in too many complex systems contexts.  

 

 

Figure 15 – NASA statistics supporting the importance of the definition phase57 

1.5 The key Role of Systems Architects 

Systems architecting would of course not exist without the right key people, i.e. systems architects, 

to support the architectural process! The systems architect shall indeed fundamentally be the core 

responsible of the systems integration issues. He/she shall thus ensure that the interfaces of the 

subsystems of the target system under design are reasonably robust for the purpose of the system 

development project58, or in other terms that they will not be questioned (or as little as possible) by 

the technical managers in charge of the different subsystems.  

To achieve such objectives, it is necessary to play on a different dimension than the purely technical 

one. A key problem within system design is indeed that it is usually not enough to have the "best" 

possible system architecture for that it is automatically picked up and used by everybody. The global 

optimum, typically with respect to quality, cost, delay and performance criteria, for an integrated 

system is indeed never59 the union of the local optima of each of subsystems that compose it: the 

                                                           
57 This figure was reproduced from [41] where it was traced back to [37]. 

58  And possibly beyond, but this is another issue, namely that of the reusability of reference systems architectures and of 
product lines design, we will not discuss here. 

59 This is true as soon as the system has not a linear behavior with respect to its entries, which is never the case for complex 
systems. This result can be traced back to Richard Bellman in the 50s (see [13]).  
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consequence is that each subsystem shall necessary individually be sub-optimal with respect to these 

criteria, if one wants to reach global optimality at system level.  

This fact is unfortunately not easy to accept for the subsystems responsible who will not design their 

sub-systems with a global vision, as can have the architect of the whole system60. To solve this 

"human" problem, which is intrinsic to the design of integrated systems, one must put stakeholder 

alignment mechanisms at the heart of any system architecting process. These alignment activities 

shall in particular ensure that the structuring systems architectural choices will always be shared by 

their stakeholders. Systemically speaking, such mechanisms will indeed guarantee that the technical 

interfaces of the product system will always be discussed and accepted at the "human" interfaces to 

which they are allocated within the project system (see Figure 16). 

 

 

Figure 16 – The key role of the systems architect 

This quick analysis therefore shows that a systems architect must always be fundamentally capable 

of converging actors on the architectural choices which he/she is responsible. This convergence work 

– which is a substantial and essential part of the systems architect job61 – is however not simple at 

all. It indeed requires mastering, among purely technical competency, a set of completely different 

soft skills that could be qualified of “human” architecting and engineering since they are highly 

involving the “human” dimension of the project system. At that level, the systems architect shall for 

instance typically have the following key capability62. 

 Identifying all stakeholders of a given system architecture: it looks as an apparently simple 

activity, but it is often terribly difficult to achieve in practice since it requires confronting the 

                                                           
60 The difficulty of understanding the importance of system architecting comes from this situation. Engineers usually deal 
with technically homogeneous subsystems of a given system (i.e. the “boxes” of Figure 16) which are clearly visible to all. 
On the other side, the systems architect takes care of the system interfaces (that is to say the "arrows" in Figure 16) that 
nobody sees because they are strictly speaking not material. The architecture work is thus done somewhere in the invisible.  
It is thus difficult to detect for the uninitiated, while fundamental since it fixes the framework in which to do engineering (a 
bad architectural framework can typically only lead to a "bad" system). 

61  And that makes a good “systems” architect a kind of 6 feet sheep… 

62 Which are typically pre-requisites to achieve the success of any actors’ convergence in a systems architecting context. 
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complex and changing reality of engineering organizations. Ensuring the completeness and 

validity of a particular organizational analysis is indeed never easy. It is notably more than 

classical to forget key players within a given engineering scope and to identify erroneously 

others63. Moreover, organizations are often changing rapidly. Making a stakeholders 

mapping should thus always be constantly update if one wants to keep pace with reality. 

 Aligning these stakeholders on a same architectural solution: this is a real “facilitation” skill 

in the best sense of the term since such a work requires a real difficult technical and human 

know-how. A systems architect will only succeed to achieve stakeholders’ convergence on 

given architectural choices if he plays consistently on both the technical side, that he/she 

should of course perfectly control to be credible, and the human level, in order to secure 

strong consensus that will withstand the test of time.   

1.7  How to Analyze a Systems Architect Profile ? 

To conclude this chapter, we will briefly present the key characteristics of an (ideal) systems architect 

profile. Such profiles are indeed quite rare and always difficult to find as a matter of fact. Having 

some clues on that still poorly explored topic may thus be helpful for any engineering organization 

that would like to increase its systems architecting capability.   

With CESAM framework, systems architecting skills are indeed analyzed from the following three 

completely different perspectives, as described in Figure 17: 

 Dimension 1 – business & technical skills, referring here first to standard capability such as 

scientific education, analysis capability and business orientation, but also to a multi-area 

knowledge, both from a product and engineering domain perspective;  

 Dimension 2 – soft skills, that is say leadership, communication and facilitation ability (key for 

being able to create consensus within stakeholders), curiosity & open-mindedness, together 

with a strong customer orientation (key for analyzing correctly a systemic environment);   

 Dimension 3 – architectural skills, with first of all abstraction and synthesis ability, modeling 

& needs capture capability, systems architecting main processes mastering and integration, 

verification, validation, qualification knowledge. 

A good systems architect must indeed have a well-balanced profile with respect to all these three 

dimensions. This gives the key clue on how to identify systems architects. One shall indeed measure 

the maturity of a future systems architect on the previous three axes and check that this maturity is 

high in all of these axes, typically by analyzing concrete realizations done by the candidate, in order 

to ensure good systems architecting capability within somebody.    

One may also pay attention to the following three unfortunately quite common anti-profiles that 

should not be confused with systems architect profiles. The first anti-profile is the technical expert 

profile, which refer to somebody who is excellent with respect to dimension 1, but much more poorly 

the other ones. A good systems architect was probably very good in several technical domains, but is 

clearly not anymore a technical expert, in the usual meaning of that term. The second anti-profile is 

the manager one who mainly developed in dimension 2. Good technical managers are usually very 

                                                           
63 This can be for instance achieved by badly analysing the role of somebody in a given organization. 
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bad systems architects due to the fact that they have a project-oriented, and not a product-oriented 

vision. Thus do never take a managerial profile for a systems architecting mission, it will not work! 

The last anti-profile is a bit vicious since it corresponds to somebody who would have a good level in 

dimension 3, but not in the others, that is to say typically with poor soft skills. We are here referring 

to a methodologist profile, in other terms to somebody who knows very well all systems architecting 

and engineering methods, but without having the ability of creating consensus among them64. A 

good systems architect has clearly strong methodological capability, but he/she shall never be 

confused with a methodologist65 (and vice-versa). 

 

Figure 17 – Ideal profile of an ideal systems architect 

Last but not least, do also not confuse systems architecting with systems modeling. Modeling is a tool 

for the systems architect, but never an end in itself. A systems architect shall master systems 

modeling, but more importantly he shall know why and how, and thus when, to model something. 

We refer to Appendix C for some good practices in that matter.  

                                                           
64 Systems architecting is never a “behind the door” process. This does not mean that solitary design work is not necessary…  
An architectural work must always identify the needs of the stakeholders and the constraints of the involved engineering 
domains. This requires a huge presence on the field! A good architecture is indeed always an architecture shared by all 
stakeholders, both external and internal: thus a permanent alignment of all concerned contributors shall be ensured. 

65 Systems architecting is indeed not a quality process, taken here in a purely normative meaning. This does not mean that 
quality is not fundamental in Systems Architecture, on the contrary…  Its effectiveness is thus not measured by the syntactic 
realization of deliverables, but by the intrinsic quality of the proposed architectural choices (which can often only be 
validated through pear reviews). The production of documentation is also not its main objective: an architectural work must 
remain smart and produce the « minimal effective » quantity of technical documentation which is required. 
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Chapter 2 – CESAM Framework 

2.1 Elements of Systemics 

Before going further, we first need to introduce the notions of interface and of system environment. 

These elements of systemics will indeed be useful for presenting further the CESAM framework. We 

refer to Definition 0.1 and Definition 0.2 of Section 0.1 for the fundamentals of systemics, that is to 

say the core definition of a system, on which CESAM framework is constructed. 

2.1.1  Interface 

The concept of interface is the first key systemic concept66 that we need to present. In this matter, 

let us thus now recall that an interface models an interaction, an exchange, an influence or a mutual 

dependence between at least two systems (some interfaces may indeed be complex when involving 

several systems67). Beware that an interface may not necessarily have a concrete implementation: it 

is just a way of expressing the relative impacts that different systems have one on the others68. 

With respect to a given system S, interfaces may then be either external when they are involving the 

considered system and some other external systems, or internal when they are only relative to sub-

systems of S. Figure 18 illustrates this notion on the electronic toothbrush example by showing two 

external interfaces between the toothbrush and the end-user (here one with his/her mouth, the 

other with his/her hand) and several internal toothbrush interfaces (that is to say two mechanical 

interfaces and one inductive interface between the base and the body of the toothbrush). 

 

Figure 18 – Examples of interfaces for an electronic toothbrush 

                                                           
66 Remember indeed that a systems architect deals fundamentally only with interfaces… (cf. section 1.5). 

67 The toothbrush has for instance a complex interface with the user during the brushing phase since both toothpaste, 
water and user mouth, teeth & hand are then involved at the same time. 

68 Most of people are making for instance the confusion between networks and interfaces. A network is indeed strictly 
speaking not an interface, but another system with which the system of interest has also a specific interface. In first stages 
of a design, one may of course abstract it and only consider the logical interface between the systems it connects, but the 
abstract interface involved in such a mechanism shall not be mixed with the network system in itself. 
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Note also that the technical interfaces, corresponding to a concrete interaction or exchange between 

several systems, are usually the easier to identify since they refer to a visible relationship between 

the involved systems. However the invisible interfaces, relative to an influence or interdependence 

between different systems that may typically be of strategic, political, societal or regulatory nature69, 

are also crucial. They are indeed much more difficult to find. They can thus be easily initially skipped 

and discovered too late, only at the moment where the designer will “see” their impact...70  

2.1.2  Environnent of a System 

The recursive nature of systemic analysis naturally leads us to introduce the notion of (systemic) 

environment of a system. We here mean a closed71 super-system of a given system S, which will thus 

be a natural basis to begin a recursive analysis of S. To be more specific, we will say that a system 

Env(S) is an environment for S if it is a closed system that results from the integration of S and of 

another system Ext(S) that will be called the outside of S within its systemic environment Env(S). 

  

 

Figure 19 – Environment of an electronic toothbrush 

A real system has of course many real systemic “environments” in the meaning of our definition, the 

physical universe in its whole being typically a common environment for each real system... However 

the pragmatic constraints of any system design & development project lead us to define a reference 

environment for any concrete system S, which will be called the environment of S by a slight abuse of 

language. This reference environment is the smallest “useful” systemic environment of the system of 

interest S. It is just the system that results from integration of S and all other real systems, external to 

S, that have an influence on its design. We will thus neglect in this way all other real external systems 

when one considers that they have no strong interdependence or no strong interaction with S72 . 

                                                           
69 Think also on the possible impacts of competitors, new technology, industrialization or maintenance on your system.  

70 Such issue typically occurs when existing stakeholders who were forgotten during the initial analysis, remembers to the 
project team that they exist! We refer to the first section of Appendix B for an illustrative case study of this situation. 

71 A closed system is a system which is considered to have no external interfaces. 

72 One can for instance typically consider that the Proxima Centauri star has simply no influence on most of the engineered 
systems on Earth, even if it is probably sending them lots of neutrinos each day… 
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Defining the environment of a system means defining its border, that is to say defining what is inside 

the system and what is outside the system. Figure 19 typically illustrates this key distinction on the 

electronic toothbrush example. We described there the main external and internal systems relatively 

to the considered case study, also specifying their hardware, software or “humanware” nature. 

Note also that defining this border is typically the first key systems architecting decision that one 

must take in practice, since it allows precisely specifying the system of interest which is under design. 

This decision is usually quite difficult73 to manage in reality, especially when a system is a small part 

of another system in which it should precisely be delimited.  

One shall also beware of the fact that one can reason on many different systems, all of them being 

naturally connected to the system of interest, such as for instance the used system (where one put 

the user within the system of interest) or the maintained system (where one puts the maintenance 

system within the system of interest), that shall never be mixed. 

The inside/outside distinction is also at the heart of the separation between the different visions that 

are used in systems architecting (see next section for more details). One can typically not speak of 

needs and requirements with respect to a system without having a clear border between a system 

and its outside, as we will see in the sequel of this pocket guide.  

2.2 The three Architectural Visions 

We are now in position to introduce the three systems architectural visions which will be our first key 

systems architecting tool for analyzing any system.  

2.2.1  Architectural Visions Definition 

The heterogeneity of the environment of a system requires to address it by means of different axes 

of architectural analysis in order to be able to integrate the whole set of various perceptions of the 

different system stakeholders74. Such a consideration naturally leads us to organize these points of 

views according to different architectural visions that are both necessary due to the variety of any 

systemic environment, but also useful since they allow decoupling the representations of a given 

system in different “properly” interrelated separated views75 which always leads to better clearness 

and flexibility in terms of system design and development management.76  

 As a matter of fact, each integrated system S can always be completely analyzed from three 

different and complementary perspectives that give rise to three generic architectural visions, that is 

                                                           
73 In the worse cases, it may typically take several months to identify precisely the scope of the system of interest. 

74 For an electronic toothbrush, these perceptions can be typically the one of the mother who wants good dental hygiene 
for her children, the one of the stressed business person who wants to clean his/her teeth as quickly as possible, the one of 
the dentist who will understand whether the toothbrush is efficient or not with respect to teeth cleaning and the one of the 
engineer who knows how to construct and how works the electronic toothbrush. 

75 This way of managing different views on the same system is in fact quite common in usual life. Think for instance of a 
tourist visiting a city. He/she will probably use many different views, typically provided by a touristic guide, a metro map 
and a city map. To find his/her way, he/she may for instance first chose the monument to visit in the touristic guide, then 
move there using the metro map and finally manage the local approach using a city map. In architectural terms, the tourist 
is thus taking information in different coupled views and integrating them in order to take the “good” decision! 

76 A classical difficulty is that such views can correspond with totally – and even sometimes opposite – different perceptions 
on the system, depending on the involved stakeholder.  
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to say operational, functional and constructional visions, each of them grouping different types of 

systemic models, as defined below: 

 Architectural vision 1 – Operational vision:  strictly speaking, the operational vision groups 

only the models of the environment of S – and not of S itself – which are involving S. Such 

operational models are thus describing the interactions of S with its environment. 

 Architectural vision 2 – Functional vision:  the functional vision groups all system level 

models describing the input/output dynamics of S, without making reference to its concrete 

components77. Such functional models are thus abstractly modeling the behaviors of S.  

 Architectural vision 3 – Constructional vision78:  the constructional vision groups the natural 

system level models of S constructed by composition of the lower level models associated 

with its components. Such constructional models are thus describing the structure of S.  

An illustration of these three different architectural visions is provided by Figure 20 on the electronic 

toothbrush example. We sketched there our three different types of models, with their connections 

(see the last subsection of the current section for more details), each of them illustrating a different 

architectural vision. One sees that the operational vision is not interested by the toothbrush behavior 

or structure, but just by describing its interactions with (in this example only some) external systems, 

which are here Power supply, End-users and Internet. On the other hand, the functional vision gives 

the main toothbrush behaviors – i.e. Provide electrical power, Generate brushing power, Provide 

brushing capability – that allow producing these external interactions as captured by the operational 

vision, when the constructional vision shows how to implement concretely these internal behaviors 

through suitable components, here a base, a body, an head and an embedded software.  

 

Figure 20 – Illustration of the three architectural visions on an electronic toothbrush 

                                                           
77 That is to say without referring to any technological choice or to any chosen solution. 

78 Other names do classically exist for that vision. One may for instance also speak of structural vision. Some frameworks 
are also speaking of logical vision to denote the constructional vision in the CESAM meaning.  
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It is also important to point out that the previous architectural visions definitions are consistent. In 

this matter, the key point is here only to be sure of the existence of functional models as defined 

above. This is however directly connected to the emergence postulate (see Section 0.2) that claims 

that the mere knowledge of the models of the components of a system and of their interaction laws 

is never sufficient to model the system that results from their integration. This fact explains why any 

system always has purely functional models, whose core fundamental role is to express the emerging 

behaviors79 that one will never be able to capture and read within constructional models80.  

 

Various Perceptions on a System: the Concorde Case 
 
The Concorde supersonic aircraft is a typical example of various – and often contradictory – 
perceptions on the same system.  

From an engineering perspective, Concorde was indeed an outstanding success. Most British 
and French engineers are usually very proud of this great technological achievement. 

But from a business and societal perspective, it was a total disaster. The supersonic aircraft 
was typically not able offering a real service to the end-customer. Concorde was indeed the 
fastest, but also the most expensive aircraft, with very few destinations offered (only Paris-
New York & Paris-Rio de Janeiro) and at the end, a quality/price ratio which was strongly 
non-optimal. Due to chemical and noise pollution, it was also not an environmental-friendly 
aircraft, which blocked it during a long time to get the landing authorization in New York city 
as a consequence of the opposition of many neighbors’ protection organizations. 

When possible, which is not always the case as taught by the final failure of the Concorde 
story, the role of the systems architect is to find the best architectural balance between all 
these different competing points of views 

 

Case study 3 – Various perceptions on a system: the Concorde case 

We can thus now understand why it is necessary to have three different types of models in order to 

model in practice a real system: the operational vision indeed captures the external viewpoint while 

functional and constructional views do capture the internal perspective, by modeling respectively 

firstly the emergent behaviors and secondly the concrete constitution of the considered system. 

As we will see more in details in the sequel, architectural visions are of course key for in a systems 

architecting perspective: the first job of any systems architect will indeed always be to classify the 

                                                           
79 Unfortunately, this is not a common understanding of the functional vision. When doing “functional analysis”, most of 
people are indeed just modeling the functions of the components of a given system, which is not functional analysis in our 
meaning since this activity shall focus on describing functions at system level, and not at component level. 

80 To understand this phenomenon, consider the example of a car whose constituent (high-level) systemic components are 
the car body, powertrain, binnacle, chassis and embedded electronics. The interaction of these components typically allows 
for features like "obstacle detection" which requires the cooperation of a radar (placed in the car body), an embedded 
software (within embedded electronics), a LED (positioned in the passenger binnacle), and possibly chassis or powertrain if 
one wants to act on the brakes and / or to reduce engine torque when an obstacle is too close to a car. Such a “transverse” 
feature is clearly difficult to catch in a purely constructional car model when one will see the flows exchanged between the 
various involved components of the vehicle without being able to account for their overall logic. Only a functional model at 
car level will allow capturing the semantics of such a transverse function. 
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modeling information according to our three architectural visions81, so as to obtain homogeneous 

system models each of them capturing a well-defined view.  

2.2.2  Architectural Visions Overview 

Let us thus now present more in details the three different – operational, functional & constructional 

– architectural visions that we introduced in the last section. 

2.2.2.1 Operational Vision 

The operational vision provides “black box” models of a given system where one does not describe 

the system of interest, but rather its interactions and its interfaces with its environment. Its core 

motivation is to understand in that way the motivation – that is to say the “Why” – of the system.  

 

Figure 21 – Operational vision – Mission Breakdown Structure (MBS) of an electronic toothbrush 

In this matter, the key point to understand is that an operational analysis manipulates concepts at 

environment level, which are mixing – by definition – both the system of interest and its external 

systems. The operational concept of “mission of a system” is a typical example of such a situation. 

Formally speaking, a mission for a given system S can indeed be defined as a function of the 

environment of reference Env(S) of that system82. When one analyzes for instance the function “To 

guarantee dental hygiene”83, whose functional behavior consists in transforming dirty teeth into 

healthy teeth and/or maintaining teeth in an healthy state, one can see that a toothbrush can clearly 

not achieve alone this feature, which also requires at least an end-user, toothpaste and water plus 

may be a dentist. Such function can thus only be allocated to the environment of the toothbrush, 

considered as a system in the meaning of Section 2.1, and not to the toothbrush alone. In other 

words, “To guarantee dental hygiene” is hence not a function of the electronic toothbrush, but a 

function of its environment, which means that it shall be interpreted as a mission – and again not a 

function84 – of the toothbrush according to our above definition. 

                                                           
81 That will be segregated more precisely according to a systemic analysis grid and organized in different abstraction levels, 
as we will see further in this pocket guide. 

82 In other terms, Mission(S)  Function(Env(S)) for every system S. 

83 Due to the functional nature of a mission, we do recommend to name it as a verb in infinitive form (cf. next subsection). 

84 The role of functional analysis is in particular to extract, strictly speaking, the functions of a system of interest which are 
hidden within its missions, that is to say the internal behaviors of the considered system that are only involving the system 
and nothing else around it (and thus also only partially contributing to the missions). For an electronic toothbrush, we may 
for instance analyze that the toothbrush is only achieving the function “To brush teeth”, which basically only provide 
brushing forces, as a partial contribution to the mission “To guarantee dental hygiene”. To illustrate this subtle distinction, 
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The operational vision relies on other operational concepts such as life cycle, operational contexts, 

operational scenarios or operational objects (cf. Section 2.4 for more details). All these concepts may 

also be managed at different levels of abstraction / grain. Figure 21 shows for instance the Mission 

Breakdown Structure (MBS) of an electronic toothbrush where its core missions are put in a hierarchy 

according to the fact that a high level mission needs the lower levels missions to be achieved.  

The operational vision can also be seen as a natural interface between engineering and non-technical 

people. Typical examples of operational models are indeed for instance development, assembling or 

maintenance models (that specify how a product system will be managed by the associated design, 

manufacturing or support systems), but also marketing or usage models (that describe how a product 

system will be seen by the market or used the end-users) and business models (which explain how 

the constructing company will earn money with a product system). In this matter, the role of the 

operational vision is to express the information contained in these different business models within a 

language that can be understood by the system designers and used in the development process.  

 
2.2.2.2 Functional Vision 

The functional vision provides “grey box” models of a given system of interest where one begins to 

apprehend the inside of the system, but only in terms of input/output abstract85 behaviors and not of 

concrete implementation choices, in order to begin understanding more deeply what does the 

system, without however knowing at this point how it is concretely structured. Its core motivation is 

to elicit in that way the behavior – that is to say the “What” – of the system. 

The core notion of the functional vision is of course the notion of “function of a system”, which refers 

to an input/output behavior of the considered system. In other terms, a function associated with a 

given system models a transformation process – which can be achieved by physical, software or even 

“humanware” resources – that transforms a given series of inputs into a given series of outputs. This 

explains why a common pattern to name a function is a verb followed by a complement, the generic 

patterns being typically “To do something” or “To transform inputs into outputs”. In any case, one 

shall always check when defining a function whether it expresses such a transformational behavior.    

Contrarily to the operational vision, all functional concepts – such as functional modes, functional 

scenarios or functional objects (see Section 2.4 for more details) – are now uniquely referring to the 

system of interest, without involving any external system. All these concepts can again be managed 

at different levels of abstraction / grain. Figure 22 shows for instance the Functional Breakdown 

Structure (FBS) of an electronic toothbrush, where its main functions are put in a hierarchy according 

to the fact that a high level function needs the lower levels functions to be achieved (i.e. the 

“algorithm” of the high level function involves the lower functions as sub-routines).  

                                                                                                                                                                                     
we may take the other classical example of the cigarette system. Most of people will probably say that the core function of 
a cigarette is “To smoke”, but again it is easy to see that one cannot smoke without at least a smoker, a source of fire and 
air, plus probably also an ashtray. “To smoke” can hence be only allocated to the environment of a cigarette and it shall be 
interpreted as a mission – and not a function – of a cigarette. One may indeed understand that “To smoke” is a complex 
protocol requiring first a smoker, a cigarette and a source of fire to provide its own function “To deliver fire”, passing then 
through a loop where smoker “inspires pure air”, cigarette “propagates fire” & “delivers tar” and smoker “expires dirty air” 
up to arriving to the cigarette consumption, with a final request by the smoker of the ashtray function “To keep ashes” 
applied to the burned cigarette. This analysis shows that the underlying cigarette functions – or in other terms the intrinsic 
behaviors of a cigarette – are here “To propagate fire” and “To deliver tar”. 

85 That is to say independent of any technological implementation. 



44 

 

 

Figure 22 – Functional vision – Functional Breakdown Structure (FBS) of an electronic toothbrush 

We may now point out that a key difficulty of functional analysis is the identification of transverse 

functions that is to say of functions that cannot be directly allocated to a single component of a given 

system. Such functions are indeed capturing the emergent behaviors resulting from the cooperation 

between the different components of a system, which by definition cannot be easily observed at 

constructional level. It is therefore always important to identify these functions in order to master 

the integration process since these functions are also telling us where different teams in charge of 

different components shall work collaboratively86. Within a functional breakdown structure, one may 

thus normally always find both component functions and transverse functions. Unfortunately most 

of engineers are often forgetting the transverse functions in their analyses, which leads them to lose 

the most important value of a complete functional analysis in a systems architecting perspective. 

Another key point is that the functional vision is fundamental in systems architecting since it provides 

the deep invariants of any system. Any communication network will achieve for instance always the 

same basic functions such as “To receive messages”, “To route messages” or “To deliver messages”, 

independently of its implementation technology that may either purely manual (think to your snail 

mail operator) or based on many different techniques (Hertzian waves, twisted cables, copper wires, 

optical fiber, etc.). In a totally different direction, consider a State as an organizational system: one 

may observe that it always relies on the core function “To collect taxes”, consisting in taking money 

from the citizen pockets and bringing it in the State ones, which is basically invariant among time 

even if the tax collecting mechanisms evolve a lot from Roman antiquity up to our modern societies. 

In other words, technology changes but functional architecture remains. As a natural consequence, 

functional architecture always provides a robust basis for architecting a system. It indeed allows the 

systems architect to reason on a system independently of technology and thus to define, analyze and 

evaluate different implementation options for a given functional architecture. Such an approach is 

key to choose the best solution, which cannot be done if one directly works at constructional level 

where one will be glued in a given technical choice, without possibility of making another.  

                                                           
86 We already provided an illustration on that situation in footnote 80 to which the reader may first refer. Another similar 
example is the thrust reversing function on an aircraft: this function, which reverts the air flow passing in an aircraft engine 
to decrease the speed of the aircraft when on ground, is provided by the cooperation of a cylinder that pushes a trap both 
located in the nacelle, the engine itself and a critical embedded software that coordinates the involved nacelle and engine 
components when thrust reversing operates. Such a function is typically transverse since distributed on several hardware & 
software components which are located moreover provided by different suppliers (typically one for the nacelle, one for the 
engine, one for the embedded system): identifying the function and putting it under control in the aircraft development 
project is thus totally key to ensure the success of its integration.     
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Good systems architectures are also based on functional segregation principles. This simply means 

that some key functional interfaces must be strictly respected at constructional level87. This gives rise 

to layered architectures where components are clustered in different independent layers connected 

by functional interfaces. Typical classical examples of such architectures are computer, mobile phone 

or communication network architectures that are organized in different independent layers, starting 

from the physical layer up to arriving to service layers (see for instance [90] for more details). One 

must thus for instance be able on one hand to change a signal processing protocol within the physical 

layer without any impact on the service layer and on the other hand to implement a new service or a 

service evolution in the service layer without any impact on the physical layer. Such a result is 

typically achieved by means of robust functional interfaces that shall also be stable among time, in 

order to absorb the technological evolutions that will naturally arrive in the life of any system88.  

It is finally interesting to observe that the standard vocabulary used to discuss of the functional vision 

is traditionally different, depending whether the considered system is a technical or an organizational 

system. The term “function” is for instance usually reserved for technical systems (that may be of 

either hardware or software nature), when one rather uses the terms “process”, “activity” or “task” 

to express the same behavioral concept when dealing organizational systems. It shall however be 

clearly understood that processes, activities or tasks are in fact nothing else than functions of a given 

organizational system, considered at different levels of abstraction. 

 
2.2.2.3 Constructional Vision 

The constructional vision provides white box models of the system where one describes all concrete 

hardware, software and “humanware”89 components of a system with their interactions. Its core 

motivation is to elicit in that way the concrete structure – that is to say the “How” – of the system. It 

is thus probably the most intuitive part of a systems architecture. 

 

 

Figure 23 – Constructional vision – Product Breakdown Structure (PBS) of an electronic toothbrush 

                                                           
87 In this matter, the role of the systems architect is to guarantee that such interfaces will never be violated in the design. 

88 Another motivation for such functional segregation is abstraction. It would indeed be basically impossible to develop a 
service if one would access directly to the physical layer of a computer system since the physical world is here usually highly 
non deterministic with many probabilistic phenomena that must be hidden to a service developer.  

89 Remember that men can be part of systems with either strong organizational dimensions such for instance as information 
systems, or when a human stakeholder plays such a key role (e.g. pilot, driver, operator, etc.) that it may be important to 
include him/her in the design, considering then an operated system rather that the underlying technical system alone. 
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The core notion of the constructional vision is of course the notion of “component of a system”, that 

refers to a concrete part of the considered system. In other terms, a component associated with a 

given system models a physical, software or even “humanware” resource that belongs to the system. 

In other word, each atom of a system shall belong to one and only one of its components. A common 

pattern to denote a component is thus just to use its usual technical or business name.  

Exactly as in the functional vision, all constructional concepts – such as configuration, constructional 

scenarios or constructional objects (see Section 2.4 for more details) – are again uniquely referring to 

the system of interest, without involving any external system. All these concepts can be managed at 

different levels of abstraction / grain. Figure 22 shows for instance the Product Breakdown Structure 

(PBS) of an electronic toothbrush, where its components are put in a hierarchy according to the fact 

that a high level component results from the integration of the lower level components.  

Note finally that the term “architecture” usually only refers to the constructional architecture of a 

system. One shall thus be aware of the fact that we will use this term in a much broader acceptation 

through our entire pocket guide, especially when speaking of systems architecture which does refer 

to the union of all architectural visions for a given system as introduced above.  

2.2.3  Relationships between the three Architectural Visions 

Last but not least, it is also important to point out the network of relationships existing between the 

three architectural visions, since they are at the heart of the systems architecting process. It is in 

particular especially important to maintain these relationships during the different design phases, 

which is difficult due to the “highly iterative & recursive nature” of systems architecting [66].  

 

 

Figure 24 – Relationships between the three architectural visions 

Figure 24 shows the generic relationships between the architectural visions as explained below. 

 The operational vision connects first with the two other visions due to the fact that missions 

are naturally implemented by functions, but also components. Another way to make this 
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connection is to observe that all external flows between the different external systems and 

the system of interest, as provided by the operational vision, must be internally captured or 

produced (depending the external flows are input or output flows from the internal point of 

view of the considered system) by functions of the system of interest90.  

 The functional vision connects back in the same way with the operational vision and forth 

with the constructional vision due to the fact that each abstract function must be concretely 

allocated to / implemented by some set of constructional components.  

 The constructional vision connects then back to the two other visions according to the 

implementation and allocation relationships that we just pointed out.  

Note in particular that one should not think91 that operational artefacts do only allocate to 

functional artefacts, which on their side do only allocate to constructional artefacts. Such a vision 

would indeed be dramatically false. Operational, functional and constructional visions shall indeed be 

analyzed as a circle of three interdependent visions. Figure 25 illustrates this situation.  

  

 

Figure 25 – Relationships existing between the three architectural visions 

One must first understand that the operational vision is nothing else than a mixed functional and 

constructional description of the part of the environment of the system of interest which involves 

this last system. As an immediate consequence, the functional (resp. constructional) dimension of 

the environment Env(S) of a given system S naturally maps with the functional (resp. constructional) 

dimension of S. Such a property implies therefore that operational architecture is connected both to 

functional and constructional architectures of a given system. As a matter of fact, the geometry of a 

given system’s environment – which is one of its typical constructional properties – maps for instance 

directly with the geometry of the considered system, without any connection with functions92. The 

same situation also holds for most of the physical properties of the environment.   

On the other hand, one must also notice that there may be feedbacks from the constructional vision 

onto the functional vision and/or the operational vision and/or from the functional vision onto the 

                                                           
90 In other terms, it is sufficient to continue each external flow, as identified in the operational vision, within the system to 
get the first functions of the system of interest. Functional analysis will then continue internally the same kind of analysis up 
to identifying exhaustively all functions, which can be checked by a functional synthesis proving that all identified functions 
are forming a coherent functional network.  

91 Which is unfortunately a common mistake … 

92 The shape of my body typically implies the shape of a chair, without requiring any functional analysis… 
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operational vision. The choice of a specific technology at constructional level may indeed typically 

induce functions that were not directly requested. Deciding to implement a given service through an 

automated device creates for instance immediately the “To distribute electricity” function. In the 

same way, the choice of a specific function at functional level may allow new services that were 

initially not designed. As another example, just remember that nobody could imagine the creation of 

an entire new world of new services thanks to the apparently simple Internet functionality93!  

2.2.4  Organization of a System Model 

We are now in position to derive the first consequences of the CESAM framework on the structure of 

a system model. We are indeed now aware of two dimensions of any system, the first one being 

provided by the three architectural visions used to model a system, the second one being simply 

given by the abstraction / grain level on which a given system may be analyzed. On this last point, we 

shall just recall that any integrated system can be analyzed on the different levels of its integration 

hierarchy that is to say at system, sub-system, sub-sub-system, etc. levels.   

 

 

Figure 26 – Organization of a system model 

Hence any system model can be naturally organized in a matrix way where the different system 

views are classified according to their architectural vision and the level of analysis within the system 

integration hierarchy, as depicted in Figure 26. Note that the horizontal relation between these views 

is allocation or implementation as explained in the previous sub-section, when the vertical relation is 

refinement when going from a high level view to a lower level view and abstraction when doing the 

converse. Refinement means here providing more details with respect to a given architectural view, 

when abstraction stands for a not  (too much) destructive idealization94 of a series of views, where 

                                                           
93 Which functionally speaking is nothing else that allowing the exchange between different computers. 

94 An abstraction/refinement mechanism is formally provided [25] by a pair (,) of applications between sets of so-called 

concrete objects and sets of so-called abstract objects, where abstraction application  maps each set of concrete objects 

into a set of abstract objects and refinement application  maps each set of abstract objects into a set of concrete objects. 
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one will reason in terms of clusters from a lower level perspective, thus losing the details for getting 

the big picture on a given architectural topic95. On one hand, refinement is clearly the right tool when 

one wants to precisely analyze a problem. On the other hand, abstraction96 is crucial for being able to 

define an architectural strategy without being lost in an ocean of details. 

2.3 CESAM Systems Architecture Pyramid 

2.3.1  The three Key Questions to Ask 

As discussed in the previous section, any system can be analyzed from an operational, functional and 

constructional perspective. In order to achieve such analyzes in practice, one must simply remember 

that one shall just ask three simple questions97 to cover these different architectural visions: 

 Key operational question: WHY does the system exist?98  

 Key functional question: WHAT is doing the system?99 

 Key constructional question: HOW is formed the system?100 

One usually summarizes these different questions in the CESAM Systems Architecture Pyramid, which 

is a simple graphical way to represent a system, presented in Figure 27 below. Such a pyramidal 

representation intends just to recall that details – and thus clarification of the system model – will 

permanently increase when moving from the operational to the constructional vision.  

Note that the key point is of course the order in which these three core questions are asked during a 

system design process. The systems architecting consists indeed in following the previous order, i.e. 

passing from the first question (“Why?”), to the second one (“What?”) up to the third one (“How?”), 

in that exact order. Be however careful not to manage successively, that is to say one after the other, 

these three types of analyses which should largely overlap in practice. At some point, it is indeed just 

impossible to reason operationally without any vision of the concrete solution that will answer to the 

                                                                                                                                                                                     
These applications are then called an abstraction/refinement pair if and only if ((A))  A for each abstract set A (refining 

an abstract set and then re-abstracting the result cannot enlarge the initial abstraction) and C  ((C)) for each concrete 
set C (abstracting a concrete set and then refining the result cannot reduce the initial concrete scope).  

95 Abstraction & refinement are core mechanisms for systems architects, especially when creating architectural hierarchies. 
A quite frequent problem in architecture is indeed the excessive number of objects generated by a step of an architectural 
analysis. In order to handle them effectively and to achieve their real global understanding, we typically have to cluster and 
to synthesize them into abstract objects. This abstraction activity can be achieved by partitioning the objects in clusters of  
“similar” weakly inter-dependent objects, then clarifying systematically the key characteristics (goal, function, feature, etc.) 
of each group and naming each group consequently. Such a process will naturally lead to architectural hierarchies such as 
Mission, Functional or Product Breakdown Structures as introduced in the previous subsections. 

96 As a matter of fact, one observes in practice that abstraction is not at all an easy activity. Most of people are in particular 
not able to manipulate efficiently this mechanism. The key difficulty is indeed to find the “good” abstractions of a given 
problem, that is to say a good balance between too abstract and too detailed views. The key point is here to be able to 
manipulate coarse grain views, with which one can reason more easily and thus take the good strategic decisions, but that 
can also be refined in fine grain views. This requires the abstract views to be holistic in order to capture all dimensions of a 
given problem. What happens unfortunately often in real life is that one creates too simple abstractions to be useful! 

97 These questions shall just be seen as a mnemonic trick to remember the scope of each architectural view. Modeling of 
each view is indeed much more complicated than that.   

98 Or more precisely what are the services provided by the system to its environment? 

99 Or equivalently what are the behaviors/functions of the system? 

100 Or in other terms, what are the concrete resources that form the system? 



50 

operational architecture101. This typically leads to manage coarse grain functional and constructional 

analyses during the operational analysis. In the same way, it is not possible to reason functionally 

without any idea of the components that may implement the functional architecture. This obliges to 

manage middle grain constructional analyses during the functional analysis. As a consequence, good 

systems architecting practice is clearly to manage in parallel the three architectural analyses at the 

same time, but not at the same grain of analysis.  

 

 

Figure 27 – The CESAM systems architecture pyramid 

Organizing the systems architecting process in that way will allow passing from technical-oriented to 

value-oriented system design strategies. In most of classical system design strategies, the technical 

components are indeed usually the starting point and it is only at the end of the development phase 

that one begins to look how the developed system fits to its stakeholders needs. Such an approach is 

a product-push strategy from a marketing perspective and it may work well as soon as one is making 

incremental improvements on existing products in stable markets.  

Unfortunately industry must nowadays more & more manage many technological ruptures within 

unstable environments. In that case, just pushing new products will have a high probability to fail. To 

increase success, one must thus invert the design logic in order to put stakeholders and their needs 

as a starting point to the product development. Systems architecting shall thus just be seen as the 

key methodological tool to implement such a need-pull strategy.  

                                                           
101 An operational architecture that cannot be implemented in a concrete solution has a name: a science fiction movie. Such 
movies are indeed typically showing us use cases of technology that are just not concretely feasible. Think to Start Trek’s 
hyper-propulsion or teleporter. The movie can be seen as an operational proof of concept of such technology, from which it 
is probably possible to make a coarse grain functional analysis. Unfortunately, we will never be able to achieve a detailed 
functional analysis due to the fact that no constructional architecture does exist in response to the operational architecture. 
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2.3.2  The Last Question that shall not be Forgotten   

The three previous questions are however not the only ones that one should ask in the context of 

complex systems design & development. The last fourth key question, unfortunately often forgotten 

in real systems contexts, refers to the product/project duality as introduced in section 1.1. It simply 

consists in asking which person – in other terms “Who?” – is the project counterpart of the different 

product elements described in the three architectural visions of the product, that is to say: 

 WHO owns each architectural element of the system? 

This question can then be declined according to the three architectural visions as follows: 

 Operational perspective: who are the stakeholders of the system? 

 Functional perspective: who is in charge of the functions of the system? 

 Constructional perspective: who is responsible of the components of the system? 

Asking these different questions is clearly fundamental from a systems architecting perspective. First 

it is just impossible to capture the right needs without deeply interacting with the stakeholders of the 

system of interest, which requires identifying them as early as possible, thus leading to question 4.1. 

Secondly, we may recall that the robustness of a system design is directly correlated to the fact that 

all transverse functions are managed, i.e. under the responsibility of somebody within the project, 

which immediately motivates question 4.2. Third one cannot imagine influencing the design of a 

system without involving all functional & constructional responsibles, which again obliges knowing 

them well, which can be achieved through questions 4.2 and 4.3. In this matter, we shall also recall 

that the role of a systems architect is usually to manage a complex socio-dynamics implying all these 

different actors, which cannot be done without perfectly understanding their personal motivations, 

their synergies and their antagonisms with respect to a given system design & development project. 

We are here again in the “who” sphere and not in a technical issue. 

 

 

Figure 28 – Alignment of the project system architecture with the product system architecture 

Note finally that the “WHO” question is also crucial in the construction of the project organization. A 

good project architecture indeed results from the mapping of all architectural elements of a given 

product system into the project system, that is to say onto people, where they shall be put under a 

single responsibility. This project/product alignment principle is indeed crucial to be sure that all 

operational, functional and constructional elements of a product system are taken in charge by 
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somebody within the project system, which obviously a sine qua non condition for the completeness 

of any engineering analysis, but also to guarantee that no product architectural perimeter has two 

project responsibles which would mechanically lead to many engineering conflicts102. Figure 28 

illustrates this alignment principle on the electronic toothbrush example: the boxes appearing on the 

project system side are for instance modeling project teams that correspond there to the first levels 

of decompositions of the different views which are provided on the product system side.  

2.4 More Systems Architecture Dimensions  

Architectural visions are however not the only architectural dimensions of a system. We shall now 

introduce a number of new dimensions that can be used to refine each architectural vision.  

2.4.1  Descriptions versus Expected Properties  

As already discussed in section 0.1, one must now recall that there exists two complementary ways 

of specifying a system. The first one refers to descriptions: in this specification mode, one explicitly103 

describes the behavior and structure, either of the system of interest (if one is reasoning functionally 

or constructionally) or of its environment (if one reasons operationally).  

 

 

Figure 29 – Descriptions versus expected properties 

The second way deals with expected properties: one is now not explicitly describing a system, but 

rather stating the (operational, functional and constructional) properties, expected/intended104 to be 

satisfied by the system. Note these expected properties are usually called requirements in systems 

                                                           
102 Such situations unfortunately often exist in practice, with sometimes with up to 10 responsibles for the same product 
system architectural perimeter! 

103 This is why descriptions are considered as specifications in extension. 
104 This is why expected properties are considered as specifications in intention.  
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engineering (see section 0.1 for more details). This gives rise to the six different – but altogether 

exhaustive105 – specification modes that are presented in the below Figure 29, that is to say: 

 For descriptions: operational descriptions, functional descriptions, constructional description, 

 For expected properties: needs106, functional requirements, constructional requirements. 

As explained in section 0.1, one can equivalently (from a purely theoretical point of view) completely 

specify any system by using either descriptions, or expected properties. However these two modes of 

specification are absolutely not equivalent from an engineering effort perspective (see again section 

0.1). On one hand, descriptions are indeed well adapted to define and tosynthetize the behavioral & 

structural dimensions of a system. On the other hand, performances of a system are typical expected 

properties. But the converse is totally false. As a good practice, an efficient and optimal – in terms of 

engineering time spent – system specification shall mix descriptions (reserved for defining behavioral 

& structural elements and their dynamics) and expected properties (reserved for performance). This 

trick allows drastically reducing the requirements volume in a specification file, thus improving its 

readability, since descriptions are usually encoded by a huge amount of requirements.  

2.4.2 Descriptions 

Descriptions can be separated in four different views, each of them modeling a different dimension 

of a system. States are first modeling time. Static elements are then depicting the core objects of 

each architectural vision when dynamics are describing their temporal behavior. Flows are finally 

consolidating the exchanges involved in these dynamics. On should also note that all these system 

views are both exhaustive – they allow modeling completely a system – and non-redundant – each 

view provides a specific perspective which is not covered by the other views – due to the foundations 

of our system architecting framework (see section 0.1).  

2.4.2.1  States 

A state T associated with a given system S is modeling a period of time, that is to say a set consisting 

of one or more intervals of time, where the system S can be analyzed in a homogeneous way from 

the perspective of a given architectural vision. A state can be usually specified by its initiation and 

termination events107, which are both modeling phenomenon occurring instantaneously, i.e. at a 

specific moment – not interval – of time. As one may imagine, the initiation (resp. termination) 

events do correspond to moments of time – the same type of event can indeed occur at different 

moments of time – where the period of time modeled by T begins (resp. ends).  

States are used to model time. In each architectural vision, a key temporal analysis consists indeed in 

decomposing in different states the time line of a system from birth to death. In such analyses, one 

can then model the usual temporal behavior of a system as a succession of states in which lies the 

system, one after the other. Think for instance to a normal day of a human person which begins in 

the “Sleeping” state, passing then to the “Morning dress” and “Breakfast” states, before arriving to 

                                                           
105 This key property is ensured by the mathematical foundations of the CESAM framework (see Chapter 0). 

106 We will use here the term “need” instead of “operational requirement”, even if they are equivalent. We indeed prefer to 
reserve the term “requirement” for functional & constructional uses in order to separate strictly the domain of the question 
(expressed with needs) and the domain of the solution (stated with requirements).  

107 T = ∪ [t1, t2] for all moments of time t1 and t2 such that an initiation (resp. termination) event occurs at t1 (resp. t2). 
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the “Transportation” and “Working” states, passing a new time in the “Transportation” state, then in  

the “Relaxing”, “Dining” and “TV listening” states, before going back again to the “Sleeping” state. 

We will discuss more precisely in Chapter 4 that kind of analysis for systems, based on states. 

There are therefore logically three different types of states for any given system S, depending on the 

considered architectural vision, which are defined as follows: 

 Operational states are called operational contexts: an operational context for S is a period of 

time OC(S) characterized by the fact that external interactions of S during OC(S) do only 

involve a certain fixed set of stakeholders or external systems of its environment. 

 Functional states are called functional modes: a functional mode for S is a period of time 

FM(S) which is characterized by the fact that the behavior of S during FM(S) can be modeled 

by only using a certain fixed set of system functions.  

 Constructional states are called (technical) configurations: a configuration for S is a period of 

time TC(S) – usually identified with the involved components – characterized by the fact that 

the structure of S during TC(S) does only consist of a certain fixed set of system components.  

In other terms, one changes of operational context, functional mode or configuration if and only if a 

new stakeholder, function or component appears within the life of a given system. Passing from the 

“Rainy” to the “Sunny” operational context typically means that the Rain stakeholder disappeared 

and was replace by the Sun stakeholder. Replacing stakeholder by function or component would 

then lead to similar examples for the two other types of states that we introduced.  

 

States types 
Toothbrush 

states 
Initiation 

event 
Termination 

event 
Characteristic set of 

architectural elements 

Operational 
contexts 

Bathroom 
Entered in 
bathroom 

Taken out of 
bathroom 

Bathroom, electrical 
distribution 

Teeth brushing Start brushing End brushing 
Bathroom, end-user 
toothpaste, water 

Reparation 
Failure 

detection 
Back in 

bathroom 
Communication device,  

end-user, repairer 

Functional 
modes 

Idle 
End  

Working 

Start  

working 

Provide (only) 

mechanical reaction 

Active Start working 
End  

working 

Provide electrical power, 
brushing forces & measures  

Passive Failure Failure fixed 
None (all functions are 

typically broken) 

Configurations 

Children Child-head on 
Child-head 

off 
Children-dedicated  

brushing head 

Adult Adult-head on 
Adult-head 

off 
Adult-dedicated  

brushing head 

Broken 
Component 

crash 
Component 
replacement 

Some non-core components 
disappeared 

Table 2 – Examples of states for an electronic toothbrush 
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Table 2 illustrates the notion of states with some examples for an electronic toothbrush, where we 

explicated the set of architectural (static) elements characterizing each state. 

One can see on these examples that there is no one-to-one correspondence between these different 

states. The toothbrush can indeed typically be in the “Bathroom” operational context and in either 

an “Active” or a “Passive” functional mode (in that last case, it would mean that the toothbrush is 

broken, but that the user did not noticed it) and in either a “Children” or an “Adult” configuration. In 

the same way, the toothbrush can be in the “Active” functional mode, but in either a “Bathroom” or 

a “Reparation” operational context (this last case corresponds to the situation where the toothbrush 

was repaired in the reparation workshop) and in lots of different configurations. The toothbrush may 

finally also be in a given configuration, but in various operational contexts or functional modes as one 

can easily check on the previous Table 2. These examples do thus show that each type of state may 

be allocated with many other types of states without any simple relationship in this matter. 

Let us end by providing the standard representation of states – in most modeling languages – which 

are usually modeled by means of oval shapes, as one can see in the below Figure 30.  

 

Figure 30 – Standard representations of states 

2.4.2.2  Static Elements 

A static element with respect to a given system S refers to an input/output mechanism associated 

with S from the perspective of a certain architectural vision. We are using the term “static element” 

to emphasize that this new system description does not focus on the temporal dynamic (see next 

sub-section for that other point) of the involved input/output mechanism, but provides just a non-

temporized definition of such a mechanism without explicating its “algorithm”.  

There are therefore logically three different types of static elements for a given system S, depending 

on the considered architectural vision, which are defined as follows: 

 Operational static elements are called missions: a mission of S is an input/output behavior of 

the environment Env(S) of S, involving both S and other external systems. 

 Functional static elements are called functions: a function of S is an abstract implementation-

independent intrinsic input/output behavior of S, that is to say that only involves S. 

 Constructional static elements are called components: a component of S formally refers to a 

concrete implementation-dependent intrinsic input/output behavior of S. A component of S 

is therefore naturally identified to a concrete part of S.   
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Missions shall never be mixed with functions or components, since they do not refer to the system of 

interest, but to its environment. Functions and components refer both to the system of interest, but 

in two different ways. Functions are indeed independent of any concrete implementation of the 

system of interest when components do always refer to its specific concrete implementation. There 

are thus two types of functions: on one hand, transverse functions that can only be implemented by 

using several components; on the other hand, unitary functions that can be implemented by using a 

single component (such functions are thus “simply” modeling the components behavior). Transverse 

functions are very important since they do model transverse system behaviors that, by definition, 

cannot be easily analyzed at constructional level. One may finally observe that the existence of such 

transversal (or equivalently emergent) behaviors is intrinsic to any system since it is directly the 

consequence of the emergence postulate (see Section 0.2). 

Note also that the standard way for stating a mission or a function of a given system is to use the “To 

do something” pattern in both cases. The only difference lies in the subject associated with the verb 

that describes the mission or function. This subject shall consist in external systems or stakeholders 

in the case of a mission (“external systems cooperating with the system shall do something”) when it 

shall only be the system alone for a function (“the system shall do something”). On the other hand, 

components are usually stated using only names referring to concrete objects forming the system. 

Table 3 illustrates the notion of static elements with some examples for an electronic toothbrush. We 

provided some inputs and outputs for each proposed static elements.   

 
Static elements 

types 
Toothbrush static elements Inputs Outputs 

Missions 

To clean teeth 
Dirty  
Teeth 

Cleaned  
teeth 

To improve teeth cleaning 
Clean 
Teeth 

Cleaner  
teeth 

To keep in operational conditions 
Working 

toothbrush 
Working 

toothbrush 

Functions 

To provide brushing strength 
Grip forces  

LV electricity 
Brushing forces 

To provide brushing measures 
Raw measures  
LV electricity 

Measurement 
data 

To provide electrical power 
Medium voltage 
(MV) electricity 

Low voltage  
(LV) electricity 

Components 

Body 
Grip forces 

Structural forces 
LV electricity 

Head LV electricity 
Brushing forces 

Structural forces 

Base 
MV electricity 
Support forces 

LV electricity 
Support forces 

 

Table 3 – Examples of static elements for an electronic toothbrush 

As already mentioned, static elements are related by allocation relations. Each function contributes 

for instance to one or more missions, which corresponds to the fact that a mission can be obtained 

by composing a function with some other input / output behavior (see the example given in note 84): 
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such a situation is then expressed by saying that this mission is allocated to the considered function. 

In the same way, a component can contribute to a mission and/or a function, which will be expressed 

by saying that such a mission or function is allocated to the considered component. 

We may also provide the standard representations of the three different types of static elements – in 

most modeling languages – which are usually modeled by circles for missions, ovals for functions and 

boxes for components, as one can see in the below Figure 31. We also expressed on this last figure 

the different allocation relationships that may exist between these different static elements. 

 

 

Figure 31 – Standard representations of static elements 

Note finally that static elements can occur at different abstraction levels that do also correspond to 

different integration levels, resulting both in an abstraction and an integration hierarchy. Hence it is 

always crucial to be able to specify how different types of static elements are connected altogether 

by such relationships. The standard representations of these abstraction / integration relationships is 

provided by the below Figure 32, where we also put the associated allocation relations (beware that 

arrow ends, which express relationships, are squared when dealing with components).  

 

 

Figure 32 – Standard representations of integration relations between static elements  
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For the sake of completeness, one also needs to explicitly represent the full integration mechanism 

that relates the different static elements of lower level that are abstracted by a static element of 

higher level (see Definition 0.5). Figure 33 below shows an example – in the line of Definition 0.5 – of 

standard representation of such an integration mechanism – where oriented arrows labelled with an 

exchanged flow represent interfaces108– between different constructional components of the same 

level of abstraction (here the head, body and embedded system that are forming the “brush” part of 

an electronical toothbrush). Similar representations do also exist with functions or missions. 

 

 

Figure 33 – Interfaces standard representation 

2.4.2.3  Dynamics 

The dynamic of a static element of a system S refers to its temporal behavior or equivalently to an 

algorithmic description of such a temporal behavior. Dynamics are completely crucial if one wants to 

precisely specify the behavior of any system or any system mission, function or component.  

There are therefore logically three different types of dynamics for a given system S, depending on the 

considered architectural vision, which are defined as follows: 

 Operational dynamics are called operational scenarios: an operational scenario of S is an 

algorithmic description of the interactions existing between the system (considered as a 

black box) and its environment,  

 Functional static elements are called functional scenarios: a functional scenario of S is an 

algorithmic description of the interactions existing on one hand internally between the 

functions of S and on the other hand externally with the environment of the system, 

 Constructional static elements are called constructional scenarios: a constructional scenario 

of S is an algorithmic description of the interactions existing on one hand internally between 

the components of S and on a second hand externally with the environment of the system. 

                                                           
108 We recall that an interface between two static elements E and F is formally nothing else that the couple (E, F). With such 
an interface, one may associate both flows exchanged between E and F and flows exchanged between F and E (we refer to 
the Flows subsection that follows for more detailed information on flows). 
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Note that these three types of scenarios have exactly the same nature since they are all describing an 

exchange algorithmic. The only difference comes here from the nature of the exchanges that are 

described by these different scenarios.  

 

 

Figure 34 – Standard representations of an operational dynamic 

Let us now end by addressing the question of the standard representations of the different types of 

dynamics which are typically given – in most modeling languages – by sequence diagrams. Figure 34 

depicts this formalism with an example of operational dynamic description, here the initiation of a 

toothbrush use where one specifies the interactions existing between all involved stakeholders and 

the system. Sequence diagrams provide indeed an efficient and classical formalism for representing 

distributed algorithms (see [20] for more details). In this mode of representation, the different 

elements in interaction are positioned on the top of the diagram and each of them has a timeline 

going from top to bottom that represents time (each element having its own time). One models then 

an interaction by putting – one after the other – arrows, going from the initiator to the receiver of an 

interaction between two elements, with an indication either of the function, used by the interaction 

initiator to manage the interaction, or of the flow which is exchanged during the interaction (see our 

next subsection for more details). These arrows are thus following the sequential order of a given 

interaction, as depicted in Figure 34. Note finally that one indicates the interacting sequences that are 

highly coupled by a large rectangle at the level of the modeled system.  

For the sake of completeness, we also provide an example of constructional scenario that can be 

found in Figure 35 below which represents the exact constructional counterpart of the previous 

operational scenario. Functional scenarios are represented exactly in the same way, components 

being just replaced by functions. Note that the difference between a functional or constructional 

scenario and an operational scenario is only that the environment is a black box in the first situation 

when it is the case of the system in the second situation109.    

                                                           
109 There are of course also mixed scenarios where one may provide details on both the environment and the system. 
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Figure 35 – Standard representations of a constructional dynamic 

2.4.2.4  Flows 

A flow associated with a system S models an object – matter, energy, data, information, etc. – which 

is exchanged either externally between the system and its environment, or internally between two 

functional or constructional elements of the system. 

Flows may be quite different depending on the vision. To illustrate that last point, let us take the 

example of a traffic light system. When the traffic light is red, it operationally sends a stop request to 

the drivers that are looking at it. The operational flow exchanged between the traffic light and the 

drivers can then be modeled by a “STOP ORDER” flow. On the functional level, one would however 

typically say that the traffic light is just sending red light (which is interpreted as a stop signal by the 

drivers) to its environment, which may be modeled by a “RED” functional flow. Finally it is amusing to 

observe that at constructional level, the red color is just produced by lighting the first (starting from 

the top) white traffic light, in connection with a red filter. The associated constructional flow can thus 

be modeled by “WHITE 3” to express that situation.  

There are therefore logically three different types of flows for a given system S, depending on the 

considered architectural vision, which are defined as follows: 

 Operational flows or objects: an operational flow or object of S is an object that is exchanged 

between S and its environment, i.e. between S and one of its external system, 

 Functional flows or objects: a functional flow or object of S is an object which is an input or 

an output of one of the functions of S, i.e. which is exchanged between the functions of S, 

 Constructional flows or objects: a constructional flow or object of S models a concrete object 

which is exchanged between the components of S. 
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Flows are usually simply stated using only names that are referring to concrete objects which are 

exchanged between different systems. Table 4 below illustrates these various notion of flows with 

some examples for an electronic toothbrush. 

 
Flow types Flow Nature 

Operational  
Flows 

Toothpaste Matter 

Brushing data Data 

Functional 
Flows 

Low voltage energy 

Brushing measure Data 

Constructional 

Flows 

Electricity energy 

Brushing pressure signal Data 

Table 4 – Examples of flows for an electronic toothbrush 

Note that flows are naturally related by allocation relations. As illustrated by the traffic light system 

example provided above, an operational flow OF may be allocated to either a functional flow or a 

constructional flow which may be operationally interpreted as OF. In the same way, a functional flow 

FF may also be allowed to a constructional flow that may be functionally interpreted as FF. Flows 

hierarchies are therefore naturally induced by these allocation relations. 

Let us end by providing the standard representations of the three different types of flows – in most 

modeling languages – which are modeled by “objects” or “blocks” in the usual meaning given to this 

concept in object-oriented modeling (see [20] or [34]). 

 

 

Figure 36 – Standard representations of flows 

2.4.3 Expected Properties 

As already stated above in section 0.3, expected properties are formally speaking logical predicates 

related with the system of interest (see Chapter 0 or Appendix A for more technical details on that 

core logical concept that goes back to Aristoteles). An expected property is thus nothing else than a 

Boolean function110, i.e. a function P that maps a system on TRUE or FALSE, depending whether the 

property that P models is satisfied or not by the system: 

P: S   P(S)  { FALSE, TRUE } . 

                                                           
110 This is thus also true for needs and requirements according to the definitions that follow. 
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This consideration allows avoiding confusing expected properties with their constitutive elements. 

An expected property indeed typically expresses that a given system shall behave or be structured 

with a certain external or internal performance111. The involved behavioral or structural elements & 

performances shall thus not be mixed with the property, since they are just not logical predicates.  

It is also important to remember that one can analyze in practice a given system S from an external 

or from an internal perspective. This consideration leads to the key distinction between needs & 

requirements, which are the two first main types of expected properties on S: 

 External perspective112 – Need: a need with respect to S is a property that is expected or 

imposed by the environment Env(S) of S, expressed in the language of the environment113 

(i.e. only referring to operational descriptions & performance),  

 Internal perspective – Requirement: a requirement on S is a functional or constructional 

property that shall be satisfied by S, expressed in the language of the system (i.e. only 

referring to functional or constructional descriptions & performances). 

One shall of course understand that these definitions are fundamentally relative to a given system. A 

need with respect to a system S is indeed a requirement on the environment Env(S) of S. In the same 

way, a requirement on S is also a need with respect to a subsystem of S. One should hence always 

remember to point explicitly out the system of interest to which refers any need or requirement. 

Note also that we used here above a voluntarily different terminology depending on the external or 

internal perspective we may take with respect to expected properties. A good system architecting 

practice indeed consists in strictly separating the domain of the question – expressed using needs – 

from the domain of the solution – expressed by means of requirements114. In other terms, needs 

shall be only reserved to model questions, when requirements shall model the corresponding 

answers. This point is crucial since many engineering problems are due to the fact that stakeholders 

are often expressing their “needs” in an intrusive way, i.e. in terms of requirements in our meaning. 

This bad practice both limit the ability of the designers to propose better alternative solutions and 

prevent them to know the real needs hidden behind requirements115, which may ultimately lead to 

bad solutions from an end-user perspective even if fitting perfectly to their requirements.    

Note finally that requirements on a system S can be of course refined into two sub-types depending 

whether one is dealing with functional or constructional visions: 

                                                           
111 In other terms, expected properties do express the performances that shall be satisfied by the system of interest or by 
its environment, depending whether one deals with the functional/constructional or operational visions. 

112 External perspective is here a synonym of operational vision. 

113 One cannot thus use the language of the system to express a need. 

114 This point is illustrated by Case study 4.  

115 In a recent customer specification file for military vehicles, one could for instance find the demand C  “The vehicle shall 
be painted in green” which was just copied/pasted from previous files. This expected property is typically not a need, but a 
constructional requirement. A good systems architect shall then try to understand the functional & operational expected 

properties from which C derives. In this case, C can be traced back to a functional requirement F   “The vehicle shall not be 

visible”, itself coming from a quite simple need N  “Soldiers shall not die when in operations”. At this point, one now has 
the rationale of the green color which was just motivated by the fact that it allows to be invisible in European battlefields 
when green is dominant. But conflicts are not anymore taken place in Europe, but rather in Middle East or Afghanistan 
where ocher and sand colors are dominant. The analysis of the root need allows thus to understand that C is a very bad 

constructional choice to implement the functional requirement F which is still valid. One shall of course rather request C’  
“The vehicle shall be painted in ocher/sand colors”, which could not be suspected if only staying at constructional level.  
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 Functional requirement: a functional requirement on S is a property that shall be satisfied by 

the behavior of S, expressed in the functional language of the system (i.e. only referring to 

functional descriptions & performances), 

 Constructional requirement: a constructional requirement on S is a property that shall be 

satisfied by the structure of S, expressed in the constructional language of the system (i.e. 

only referring to constructional descriptions & performances).  

To write down properly these different types of expected properties, one shall use the standard 

statement patterns – referring to the notions introduced above – that are provided in Table 5. 

 

Need 
The “external system116” shall “do something / be formed of something”  

with a certain “operational performance” in a given “operational context”. 

Functional 
requirement 

The “system” shall “do something117”  
with a certain “functional performance” in a given “functional mode”. 

Constructional 
requirement 

The “system” shall “be formed of something118”  
with a certain “constructional performance” in a given “configuration”. 

Table 5 – Standard statement patterns for needs and functional & constructional requirements 

Table 6 illustrates the three previous different types of expected properties – written in accordance 

with the above standard statement patterns – on an electronic toothbrush, with a picture of the 

toothbrush part which is (partially) specified by them. In this example, the proposed need was 

derived first into a functional requirement that was derived then into a constructional requirement. 

One can thus immediately trace back here the last constructional choice to the associated service 

provided to the end-users, which is useful – especially to analyze the stakeholder value brought by a 

given technical decision –  since this service cannot be seen at constructional level. 

 

Need End users shall get a positive119 feeling when efficiently cleaning their teeth. 

Functional 
requirement 

The electronical toothbrush shall display an encouraging message  
within 1 second when cleaning performance has been met. 

Constructional 
requirement 

The electronical toothbrush shall have a user interface of 2.5 cm x 1cm  
in each configuration.  

 

Table 6 – Examples of expected properties per architectural vision 

                                                           
116 Or equivalently a stakeholder of the system (see Chapter 3).  

117 “To do something” shall always refer here to an existing function of the considered system. 

118 “To be formed of something” shall always refer here to an existing component of the considered system. 

119 Positive refers here to the performance. 
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Note finally that the previous types of expected properties are complete by construction with respect 

to the CESAM framework. In other words, one can always specify any system in intension by using 

only needs, functional requirements and constructional requirements, without anything else. 

 

Needs or Requirements? The Tanker Case 
 
In the 70’s, important leaks occurred when pumping out liquid natural gas from tankers. The 
issue was that dangerous cracks appeared in the shell of the tankers due to the very cold 
temperature – closed to 0°K – of the gas.  

To solve that problem, engineers began to think in terms of technical solutions which lead to 
a strong requirement on a metal for tankers shells that should not crack at liquid gas 
temperature. This was however a very bad idea since the resulting solution would probably 
have requested many years of R&T and cost hundreds of millions euros.  

Another way of reasoning is to express the problem in terms of the question to solve, which 
is “how to avoid the gas to enter in contact with the shell metal?” Such a question expresses 
a simple constraint on the gas (which is a need in CESAM formalism) that has to be fulfilled.   

Such a question has then a simple and quite cheap solution, consisting in putting pieces of 
folded cardboard under the leaking points. The gas is then retained by the cardboard before 
quickly evaporating, which avoids all troubles.   

As one sees on that illustrative simple example, there may be a huge gap between thinking 
in terms of solutions (requirements) and in terms of questions (needs).  

 

Case study 4 – Needs or requirements? The tanker case 

There is in particular no need to introduce the concept of “non-functional requirements” that exists 

in many other architectural referential (cf. [42], [43] or [44]) and does often refer to “ity” properties 

of a system such as availability, maintainability, operability, safety, reliability, security, etc. All these 

properties can indeed easily be expressed in terms of needs. To be more specific, let us take the 

example of a maintainability property for a given system which would probably be expressed by most 

engineers by stating that M  “the system shall be maintainable”. However “To be maintainable” can 

clearly not be considered as an internal function of a system since it does not refer to any 

input/output behavior, but rather to a permanent status of the system. Property M is therefore 

neither a functional, nor a constructional requirement120, nor a need121 within our framework. It has 

thus absolutely no status at all, which shows that it is probably a bad specification! The good way of 

expressing the property M is then just to identify the hidden stakeholders behind – which are here 

just maintenance teams – and to understand what are expecting these stakeholders. In our example, 

this would lead us to reformulate M by stating instead M’  “the maintenance teams shall maintain 

the system with a certain performance”122 which is now obviously a need since it expresses an 

expectation of the environment of the system. The reader can do the same kind of exercise for the 

                                                           
120 Since it also obviously does not directly refer to a property of the components of the system. 

121 Strictly speaking, it indeed only refers to the system and not to its environment. 
122 Which is now correctly written since “To maintain the system” is clearly a behavior of the maintenance teams. 
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other classical “non-functional properties” of a system to convince him/herself that all these 

properties are just bad formulations of needs. 123  

2.5 CESAM Systems Architecture Matrix 

We are now in position to introduce CESAM Systems Architecture Matrix, which is presented in Table 

7 below. This matrix is just a synthesis of the different architectural dimensions that we introduced 

within this chapter. It indeed presents all the types of views that allow to exhaustively describe any 

system, classified according to: 

 a first axis of classification corresponding to the three architectural visions, that is to say the 

operational, functional and constructional visions, 

 a second axis of classification corresponding to behaviors, that is to say the conjunction of: 

o expected properties, 

o all descriptions, i.e. states, static elements, dynamics and flows. 

Crossing these two axis, one thus immediately gets the matrix of Table 7 where we listed the names 

of all different views that were introduced along the current section. As already stated above, the 

completeness of all these views in matter of system specification is an immediate consequence of all 

the material that we introduced along the previous pages.  

 
 

Visions 
Expected 

properties 

Descriptions 

States 
Static 

elements 
Dynamics Flows 

Operational 
vision 

Needs 
Operational 

contexts 
Missions124 

Operational 
scenarios 

Operational 
flows or objects 

Functional 
vision 

Functional 
requirements 

Functional 
modes 

Functions125 
Functional 
scenarios 

Functional 
flows or objects 

Constructional 
vision 

Constructional 
requirements 

Configurations Components126 
Constructional 

scenarios 
Constructional 

flows or objects 

Table 7 – CESAM System Architecture Matrix 

As explained in subsection 2.4.3, one will of course always have to find the good balance between 

expected properties and descriptions when specifying a system. CESAM System Architecture Matrix 

is thus only a help to be sure that all dimensions of a system where taken into account during its 

modelling, but it does in no way provide – neither CESAM System Architecting Method does – an 

automatic specification mechanism for systems. Systems architecture indeed remains an art where 

expertise, experience and competency of systems architects are clearly fundamental!  

                                                           
123  Availability, operability, safety, reliability or security issues do for instance typically refer to customers, end-users and/or 
operators expectations. 

124 Including descriptions of all integration mechanisms involving missions. 

125 Including descriptions of all integration mechanisms involving functions. 
126 Including descriptions of all integration mechanisms involving components. 
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To concretely illustrate this last notion, let us now provide an example of a partially completed 

CESAM System Architecture Matrix for the electronical toothbrush. 

 

Visions Expected properties 

Descriptions 

States 
Static 

elements 
Dynamics Flows 

Operational 
vision 

End-users want to have 

less than one cavity in 

average per 5 years due 

to teeth brushing 

Teeth 

brushing 

 

Brush teeth 
Teeth brushing 

scenario 
Toothpaste 

Functional 
vision 

The electronic 

Toothbrush shall produce 

a brushing force of 0.5 N 

in automatic mode 

Automatic 

mode 
Produce a 

brushing force 

Brushing force 
production 
scenario 

(functional) 

Brushing 

force 

Constructional 
vision 

The electronic toothbrush 

shall have a removable 

head in children & adult 

configurations   

Children 
configuration 

Head 

Brushing force 
transmission 

scenario 

(concrete) 

Electricity 

Table 8 – Example of a CESAM System Architecture Matrix for the electronical toothbrush 

One can now understand why system modeling is so unintuitive. If one completes CESAM System 

Architecture Matrix by adding system abstraction / integration levels, one may indeed understand 

that a system model looks much more to a cube than to a matrix as depicted on Figure 37 below that 

represents CESAM System Architecture Cube, the 3D-version of the 2D CESAM System Architecture 

Matrix. One can thus understand that it is easy to be lost in such a multi-dimensional world! 

 

 

Figure 37 – CESAM System Architecture Cube 

Note also that the three first descriptions types – that is to say states, static elements and dynamics – 

are the most important since the last one – flows – is just a dedicated synthesis, focused on 

exchanges, which consolidates information that   can already found in the views corresponding to 



67 

dynamics.  Restricting the CESAM System Architecture Matrix to these three first descriptions types 

leads us thus to a simpler matrix – the so-called CESAM 9-views matrix127 – which provides the 

minimal number of descriptions to construct when “modeling” a system128. An example of such 

CESAM 9-views matrix is provided below on the electronical toothbrush case study.     

  

 

Figure 38- Example of a CESAM 9-views matrix for an electronical toothbrush129 

At this point, note finally that CESAM Systems Architecting Method is nothing else than a certain way 

of moving in the CESAM System Architecture Matrix, starting from the knowledge of all use cases 

provided by the system lifecycle up to arriving to a quite precise vision on all constructional scenarios 

of the system. We will not develop this point here since the forthcoming chapters are dedicated to 

the presentation of the main deliverables of that process. 

  

                                                           
127 This terminology was invented by Vincent Vion, chief systems architect of PSA Peugeot Citroën.  

128 Beware that modelling is considered in this pocket guide in a broader way with respect to the usual meaning of this 
concept which, for most authors, only refer to description – in the meaning of subsection 2.4.2 – construction. 

129 Our example of functional scenario is represented here using an activity diagram (see [20]) which an alternative to the 
representation mode introduced and discussed previously. 
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Chapter 3 – Identifying Stakeholders: 

Environment Architecture 

3.1 Why Identifying Stakeholders?  

Stakeholder identification, or equivalently environment architecture, is a key systemic analysis: each 

mistake in this analysis may indeed result in flaws in the product under design. One must indeed 

remember that a system is nothing else that a concrete answer to a series of needs130 and that these 

needs are coming from external stakeholders. As an immediate consequence, forgetting important 

stakeholders, misevaluating their role and/or considering erroneous ones will result in missing needs 

and/or working with wrong needs, and hence in missing requirements and/or working with wrong 

derived requirements, relatively to a given system. The resulting concrete system that might be 

developed on such a basis will therefore typically either miss the functions and components that are 

specifically addressing these missing needs, or have unnecessary functions and components that are 

associated with these wrong needs. One can therefore easily understand the crucial importance of 

correctly identifying stakeholders – that is to say the necessary and sufficient ones – since any system 

development process fundamentally rely on the quality of this identification.  

To stress on this last point, one shall also have in mind the potential cost(s) of a wrong stakeholder 

identification which explain why one must put the necessary energy in this core initial analysis. In this 

matter, one commonly considers that such costs follows a geometric progression within the system 

lifecycle (see Figure 39): if the correction of an error during stakeholder identification has cost 1 (i.e. 

typically adding a missing stakeholder or replacing an erroneous stakeholder in this analysis), one 

usually considers that correcting the consequence of that error will have cost 10 when done during 

system design, cost 100 when corrected during detailed design, cost 1.000 when discovered during 

integration and even cost 10.000 if managed when the system is in service. One must thus spend 

enough time initially in order to achieve an as-sound-as-possible environment architecture. 

 

 

Figure 39 – Impact of an error in environment architecture 

                                                           
130 We recall that we are using here the term “need” in a technical way. A need indeed refers to any property expected 
(which would correspond to a need in the common sense) or imposed (which would rather correspond to a constraint in 
the common sense) by the environment of a given system (see subsection 2.4.3 for more details).  
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Any system architect shall in particular always be highly anxious of being sure that stakeholders were 

correctly identified since all the development process rely on that initial analysis! 

 

Stakeholder Identification may Disrupt the Nature of a Design Problem:  

the Mobile Industrial Tool Case 
 
AVORE is an industrial company that produces heavy industrial electrical generators, each 
product having typically a weight of more than 100 tons. The average production duration of 
these generators was unfortunately around one year due to the fact that the assembly lines 
of AVORE’s plants were never optimized.  

An obvious reason for such a bad production delay was due to the fact that the electrical 
generators were produced in an industrial chain organized in three successive workshops 
where the generators were progressively assembled. Due to the important weight of the 
generators, the logistical time required to move the generators from one workshop into the 
other represented 40 % of the total construction time, which was not “lean” at all! 

The method responsible of the Alsacian plant of AVORE had then a brilliant idea. Instead of 
moving the generators to the workshops, why not doing exactly the converse and moving 
the workshops to the generators, which would suppress a lot of stupidly lost time. Following 
this intuition, he launched a study for developing a mobile industrial tool – allowing to do 
the production activities of the second and third workshops of his plant – that would allow 
to manage the construction of the generators without moving them. 

The initial step of this study was logically dedicated to a stakeholder identification. The first 
identified stakeholders were then naturally the plant, the industrial department of AVORE 
and the customers who would be the first beneficiaries of the new mobile industrial tool. In 
a second step, it was however understood that this tool had unfortunately a strong impact 
on another less important plant of AVORE, located in Normandy and dedicated to absorb 
the customer demands that the Alsacian plant could not manage. It indeed appeared that 
the efficiency increasing, brought by the mobile industrial tool, allowed the Alsacian plant to 
manage all customer requests, without any need of a supplementary plant. 

The discovery of the Normand plant as a new stakeholder changed radically the problem 
which was not anymore a simple technical optimization question, but a deep political issue. 
Additional stakeholders emerged them immediately: trade unions, local Normand politicians 
and finally AVORE’s general direction who canceled after two months of discussions the 
mobile industrial tool project in order to avoid any social trouble ...  

 

Case study 5 – The Mobile Industrial Tool Case 

3.2 The key Deliverables of Environment Architecture 

For any system S, environment architecture has two core deliverables: 

1. the stakeholder hierarchy diagram that hierarchizes all stakeholders associated with S – or 

equivalently external systems – according to an abstraction hierarchy (see below), 

2. the environment diagram that describes the exchanges existing between S and its first level 

stakeholders – or equivalently external systems – with respect to the above hierarchy.  
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These two deliverables are presented more in details below.  

3.2.1  Stakeholder Hierarchy Diagram 

Let S be a system and let Env(S) be its reference environment (see section 2.1). The stakeholder 

hierarchy diagram of S is then a hierarchical exhaustive representation of all stakeholders – or 

equivalently all external systems to S – that belong to Env(S), a stakeholder H1 being under another 

stakeholder H2 in this stakeholder hierarchy if and only if H1 is contained in H2 (simply viewed here 

as sets), meaning that H1 is a special case of H2 or equivalently that H2 is more abstract that H1.  

The project system is for instance a typical stakeholder,  associated with any engineered system that 

hierarchically abstract – in the above meaning – an engineering team, the supply chain, an 

industrialization team, a plant and the delivery logistics. The engineering team may then be 

recursively hierarchically decomposed into a project management team, a systems architecture 

team, different specialty engineering teams and a verification & validation team. The same type of 

recursive decomposition applies of course for all other first order stakeholders.  

Figure 40 below also provides an illustrative partial example of stakeholder hierarchy diagram for an 

electronic toothbrush, a stakeholder or equivalently an external system being – classically – 

represented here by a graphic depicting a person131, when the inclusion or abstraction relationships 

on which this hierarchy relies are – also quite classically – represented by arrows.  

 

 

Figure 40 – Example of a stakeholder hierarchy diagram for an electronic toothbrush 

When dealing with the stakeholder hierarchy diagram, the main standard difficulty is to find the 

“good” abstractions. One shall indeed avoid to have too much stakeholders of first level, but also too 

many levels of abstractions if one wants to be able to efficiently use such a view. The 7x7x7 rule 

provides a simple trick to use in order to organize optimally this diagram. This ergonomic principle 

indeed claims that a human being can only holistically understand a maximum number of more or 

                                                           
131 This is just a representation which may typically model any hardware, software or “humanware” system as soon as they 
are part of the reference environment of the considered system. 



72 

less 350132 data, as far as they were hierarchically clustered into 7 main groups of data, each of them 

again decomposed into 7 subgroups, each of them finally containing 7 elementary data. The 7x7x7 

principle is therefore a precious tool for organizing a stakeholder hierarchy diagram: the limitations 

of the human brain indeed oblige to respect it for constructing such a diagram, as soon as one wants 

to easily read and communicate with these diagrams. As a consequence, a typical “good” stakeholder 

hierarchy diagram have no more than 7 high level stakeholders, each of them decomposed in around 

7 medium level stakeholders, refining finally into 7 low level stakeholders. Note of course that the 

number 7 shall just be taken as an order of magnitude. Obtaining up to 10-12 high level stakeholders 

in a stakeholder hierarchy diagram would typically not be a heresy: however one must probably not 

go further without at least checking whether this number is justified. Finally one shall not hesitate to 

construct additional stakeholder hierarchy diagrams for refining such an analysis as soon as all 

relevant stakeholders are not captured.   

3.2.2  Environment Diagram  

Let again S be a system and Env(S) be its reference environment (see section 2.1). The environment 

diagram of S is then a representation of: 

 the system S and all the high level stakeholders – or equivalently external systems to S – in 

the meaning of the stakeholder hierarchy introduced in the previous paragraph, 

 all flows exchanged between the system and its stakeholders, that is to say between S and 

the external systems of its reference environment. 

Figure 41 that follows gives an example of environment diagram, here associated with an electronical 

toothbrush, taking here the same representation for stakeholders of Env(S) than in the stakeholder 

hierarchy diagram, when the system S is modeled by a box.  

 

 

Figure 41 – Example of an environment diagram for an electronic toothbrush 

                                                           
132 7 multiplied by 7, multiplied again by 7 makes 343. 
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A classical way of organizing an environment diagram for a given system S consists in respectively 

positioning the following stakeholders, i.e. external systems, in the four quadrants of the diagram: 

 in the left hand-side of the diagram: key input systems of S, 

 in the right-hand side of the diagram: key output systems of S, 

 in the top of the diagram: key constraining systems with respect to S, 

 in the bottom of the diagram: key resource systems with respect to S. 

These key input, output, constraining and resource systems associated with S within the environment 

diagram will be respectively denoted below by I(S), O(S), C(S) and R(S). 

Note that the environment diagram of Figure 41 is for instance typically organized in such a way. This 

mode of representation is useful since it equips such a diagram with a natural semantics. One may 

indeed automatically read the mission of the considered system on an environment diagram 

organized in such a way using the following pattern: 

 

Pattern of mission statement of a system S 

The system S shall transform inputs of I(S) into outputs of O(S)  
under constraints C(S) and with resources R(S). 

 

Table 9 – Pattern of mission statement of a system 

In a similar way, functional analysis is also naturally oriented by such a representation mode. The 

core functions of a system S are indeed then the functions that are connecting the input systems I(S) 

to the output systems O(S), when the piloting and the support functions of S are the functions that 

are mainly exchanging with respectively the constraining systems C(S) and the resource systems R(S). 

The environment diagram is thus a very important diagram which induces structuring architectural 

orientations for a system. It can also be used for monitoring the first systems architecting activities. A 

good environment architecture shall indeed fundamentally always be balanced: the number of lower 

level stakeholders or of needs per high level stakeholder shall typically be more or less the same. Any 

difference of balance in these numbers shall therefore necessarily puzzle the good systems architect 

who must question it, even if there is a rational explanation to it. As we can see, the environment 

diagram is a very rich diagram and a precious tool for the systems architect! 
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Chapter 4 – Understanding Interactions with 

Stakeholders: Operational Architecture 

4.1 Why Understanding Interactions with Stakeholders?  

Operational architecture, or equivalently operational analysis, intends to precisely understand the 

interactions among time between the system of interest and the external systems of its reference 

environment, or equivalently of its stakeholders. Motivations of environment architecture, as already 

discussed in subsection 3.1, also apply in the same terms – mutatis mutandis – to operational 

architecture. Exactly as for stakeholder identification, any forgetfulness, misunderstanding or error 

that could occur during the operational architecture process may indeed have disastrous and costly 

consequences on a system under development.  

As previously pointed out in subsection 3.1, one must indeed understand that any function and any 

component of a system ultimately intends to provide an answer to a stakeholder and thus is always 

involved in the different interactions that are taking place between the system and its environment 

(of reference). One can therefore just not design – at least with a reasonable level of confidence – 

the different functions or components of a system without understanding the missions to which they 

contribute. Many design mistakes are typically done when designers do not have any precise idea of 

the various operational contexts in which the system they are developing will be used. We can thus 

only stress here the imperious necessity of always managing operational architecture in any systems 

architecture process, which will also allow to bring back “meaning” to the end-engineer who is 

working on a little part of a large system. Medieval cathedrals – whose construction took centuries – 

would probably never have been built if all involved workers had not a deep understanding of the 

global target to which they were contributing …133 

The decoupling between operational architecture and both functional & constructional architecture 

is also fundamental. This apparently simple principle is in fact much more subtle than it seems. It 

typically allows to develop systems that have very different operational architectures, but similar 

functional & constructional architectures. This is the principle of product lines where one constructs 

“flexible” systems which have a very large customer diversity – in order to fit as much as possible to 

the needs of the market – but with a very low technical diversity134. The idea is to develop a family of 

systems with a very large number of operational architectures, corresponding to different customer 

needs, on the basis of 1) standard functional and constructional elements (usually corresponding to 

everything that the customer does not see) and 2) a limited number of additional specific functional 

and constructional elements that are capturing the operational – or equivalently here the customer – 

diversity (and thus the value that is perceived by the customer). Such an approach allows to deliver 

highly customized products to the customer that are constructed using only standard modules. Many 

                                                           
133 In “The announcement to Mary”, a play written by the French writer Claudel whose action takes place in the Middle-Age 
during the construction of the Saint-Rémi church in Reims – France, two sculptors are working on a little statue located in 
the front of the church. One asks them what they are doing and they are answering: “we are building a cathedral”.  

134 This last principle is the basis of diversity management whose purpose is to maintain in configuration among time such 
flexible architectures. 
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industries – automotive, consumer electronics and even food & beverage135 – are currently using 

with success this type of architecture for their products.  

Despite of its core importance as stressed above, operational architecture is unfortunately still an 

analysis which is not well known and often not practiced at all, probably since it may be considered 

as not enough technical and concrete (engineers usually like to quickly jump into technique …). We 

thus must emphasize on the value of operational architecture which is – even if apparently not too 

technical136 – a core technical analysis that can only be done by a systems architect. One shall indeed 

understand that operational architecture deliverables are structured in order to be easily mapped 

with functional and constructional deliverables. Thus it is just impossible to perform any operational 

architecting without understanding precisely its functional and constructional consequences, which 

can only be done by a technical-minded person, typically a systems architect. 

 

A typical Lack of Operational Architecture: the Airbus A400M Atlas Case 
 
The Airbus A400M Atlas is a multi-national, 4-engine turboprop, military transport aircraft. It 
was designed by Airbus in order to replace older transport aircraft, such as the Transall C-
160 and the Lockheed C-130 Hercules. The project began in the early 1982, as the Future 
International Military Airlifter (FIMA) group, set up jointly by Aérospatiale (France), British 
Aerospace (Great-Britain), Lockheed (USA) and Messerschmitt (Germany), when the first 
flight of the A400M took only place on December 2009 from Seville, Spain, as a result of a 
tremendous number of development program delays (that moreover also lead to huge cost 
overruns as one could have expected). 

The root cause of these problems can probably be traced back to the requested operational 
architecture for this aircraft. The A400M was indeed requested to support both tactical (i.e. 
managing supplies and equipment transportation in a theater of military operations) and 
strategic (i.e. transporting material, weaponry or personnel over long distances) missions. 
But it happens that these two operational contexts are radically different: on one hand, the 
tactical context requires the aircraft to manage short landing & take-off distances and to 
have low-pressure tires allowing operations from small or poorly prepared airstrip; on the 
other hand, the strategic context is characterized by long landing & take-off distances and 
by high-pressure tires for moving heavy charges on (normal) military airports. Similar 
discrependencies could also of course be observed at the level of the aircraft control logics. 
Thus, as one can easily guess, implementing these two very different use cases in the same 
constructional architecture is not a “piece of case”.137   

 

Case study 6 – The Airbus A400M Atlas Case 

                                                           
135 All types of Danone or Nestlé yoghurts are for instance made using the same white mass (standard module #1) and the 
same preforms, i.e. tubes from which different types of cups are produced through adapted blowing (standard module #2). 
When one makes a yoghurt, the industrial chain begins by a “generic” type of yoghurt, before adding the specific additives 
(the specific modules) that are given different flavors to the yoghurts. This principle is called late differentiation: it allows to 
react quickly when a competitor launches a new product or when the customer taste evolves, since one just need changing 
the last machines of the industrial chain to adapt without reorganizing the full chain (which takes time and money).  

136 Operational architecture can indeed be seen as an interface between the stakeholder and the engineer worlds, since it 
offers a language that can be understood both by stakeholders and engineers, which explains its apparent simplicity. 

137 This case study also illustrates that operational architecture cannot be done in isolation. One must always understand 
and validate its functional and constructional consequences before freezing an operational architecture. 



77 

4.2 The key Deliverables of Operational Architecture 

For any system S, operational architecture has five core types of deliverables: 

1. the need architecture diagram that hierarchically organizes all needs – with respect to S – 

according to an refinement hierarchy (see below), 

2. the lifecycle diagram that describes how S passes – with indication of the associated events 

– from an operational context to another one, starting from its birth up to its death,  

3. the use case diagrams that are describing – in a purely static way – the missions of S that are 

contributing to a given operational context, 

4. the operational scenario diagrams that are describing – in a dynamic way – the interactions 

taking place between S and its stakeholders138 in a given operational context, 

5. the operational flow diagrams that synthetizes all flows – with their logical relationships –

exchanged between S and its reference environment during the lifecycle of S. 

These different types of deliverables are presented more in details below.  

4.2.1  Need Architecture Diagram 

Let S be a system. The need architecture diagram of S is then a hierarchical exhaustive representation 

of all needs with respect to S, a need N1 being under another need N2 in this hierarchy if and only if 

one can logically deduce N1 from N2139. In this last situation, one says then more precisely that N2 

refines into N1, which explains why one speaks of a need refinement hierarchy. 

Figure 42 below now shows a (partial) need architecture diagram for an electronic toothbrush, a 

need being – classically – represented here by a 2-part box, whose first top part is a short name 

summarizing the need scope and second bottom part is the need statement, when the refinement 

relationships on which the need hierarchy relies are – also classically – represented by arrows. 

 

 

Figure 42 – Example of a need architecture diagram for an electronical toothbrush 

                                                           
138 Or equivalently external systems. 

139 Remember that needs are logical predicates (see subsection 2.4.3). 
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The same issue that was already pointed out in the first part of subsection 3.2 when dealing with the 

stakeholder hierarchy diagram can also be expressed – more or less in the same terms – with the 

need architecture diagram: organizing a need refinement hierarchy is indeed always difficult since 

one shall avoid to have too much needs of first level, but also too many levels of refinements if one 

wants to be able to efficiently use such a view. The 7x7x7 rule (see first part of subsection 3.2) is 

again precious to handle this real difficulty. As a consequence, a typical “good” need architecture 

diagram associated with a given system shall have no more than 7 high level needs, each of them 

refined in around 7 medium level needs, finally also refining in the same way into 7 low level needs. 

Note again that the number 7 shall of course be just taken as an order of magnitude. Obtaining up to 

10-12 high level needs in a need architecture diagram could of course work: however one must 

probably not go further without analyzing whether this number is justified. Finally one shall not 

hesitate to construct additional need architecture diagrams for refining such an analysis as soon as all 

relevant needs are not captured.   

4.2.2  Lifecycle Diagram 

Let S be again a system. The lifecycle diagram of S is then a representation of: 

 the operational contexts of S, with their relative temporal relationships (consecutiveness, 

inclusion or simultaneity)140, 

 the events that cause the different transitions between each operational context of S and the 

immediately consecutive ones. 

To draw such a diagram, we shall give the standard representations of the three temporal relations 

between operational contexts that we introduced above, which are provided by Table 10, where C 

and D stand for generic operational contexts. Remember here that operational contexts are modeled 

by ovals, as introduced in the first paragraph of subsection 2.4.2.  

 
Temporal 
relation 

Semantics Graphic representation 

Consecutiveness 
D is consecutive to C when an  

termination event of C is exactly 
equal to an initiation event of D  

Inclusion 
D is included in C when the period 

of time underlying to D is contained 
in the period of time underlying to C   

Simultaneity 
D is simultaneous to C when the 
periods of time underlying to C  

and D are exactly equal  

Table 10 – Graphic representations of temporal relationships between operational contexts 

                                                           
140 These three temporal relations are necessary and sufficient to model any temporal relationships between operational 
contexts among a system lifecycle. To be convinced of that claim, let us analyze the (only embarrassing) situation of two 
intervals of time P and Q that overlap, i.e. such that P = [s, t] and Q = [u, v] with u < v. One can model such a situation with 
our temporal relations by first decomposing P into P1 = [s, u] and P2 = [u, t] and Q into Q1 = [u, t] and Q2 = [t, v] and 
observing then that P2 is consecutive to P1, Q1 is simultaneous to P2 and Q2 is consecutive to Q1. 
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Figure 43 below provides an illustrative lifecycle diagram associated with an electronical toothbrush, 

taking here the standard representation of operational contexts and of their temporal relationships 

that we already introduced, when events – that induce operational context transitions – are modeled 

by arrows labelled with the name of the relevant event. Note also that the initial (resp. termination) 

events in each operational context do not respect this rule since they are conventionally modeled by 

small black circles (resp. by white circles containing a black circle). 

 

 

Figure 43 – Example of lifecycle diagram for an electronical toothbrush 

Note finally that there is a perfect symmetry between the environment diagram, dedicated to model 

the space in which evolves a system, and the lifecycle diagram, dedicated to model the periods of 

time through which passes a system. Since space and time are always both required to specify any 

system behavior (that necessarily takes place somewhere at a certain time), one can easily see that 

these two diagrams are equally important to specify any system.  

4.2.3  Use Case Diagrams 

Let S be a system, let Env(S) be its reference environment and let q(S) be an operational context of S. 

A use case diagram associated with S and q(S) is then a static representation of the missions achieved 

through the collaboration of S and its external systems within Env(S), during the period of time which 

is modeled by q(S), which explicitly specifies: 

1. the external systems of the environment of S that are contributing to each mission,  

2. the missions that contribute to another mission.  

Note that it is something necessary, when modelling a use case diagram, to also represent behaviors 

of Env(S) in which the system S is not contributing at all. This is done by just indicating that S is not 

contributing to such a function of Env(S).  

Figure 44 that follows provides an example of use case diagram, associated with the “Brushing data 

transmission” operational context of an electrical toothbrush. The square represents the system of 

interest when we used again the “person” representation to model its stakeholders. A mission is 

(resp. not) placed in the square when the system of interest contributes (resp. does not contribute) 

to it. In the same way, one puts a line between a stakeholder and a mission when the stakeholder 
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contributes to such a mission141. One also indicates by a rigid arrow when a mission contributes to 

another mission and by a dashed arrow when a given mission M1 is mandatory to manage another 

one M2. Beware at that last level since the standard convention in this matter is highly counter-

intuitive: one indeed models such a situation by putting a dashed arrow from M2 to M1 and not the 

converse. Note finally that it is interesting to observe on that example that the motivation of the 

“brushing data transmission” cannot be found in a mission of the electronic toothbrush, but rather in 

the “Follow brushing recommendations” which is an environment function involving only end-users 

and dentists without the electronic toothbrush. One can then easily understand the value of a use 

case diagram on such a situation which would clearly not be possible to describe without a specific 

environment-oriented diagram such as a use case diagram. 

 

 

Figure 44 – Example of use case diagram for an electronical toothbrush 

It is interesting to point out that if one considers the special – limit – case of the operational context 

equal to the complete lifecycle of a given system S, the associated use case diagram would especially 

provide a hierarchical representation of all missions of S, jointly with the indication of the different 

stakeholders that are contributing to each mission of the system. For the sake of readability, one can 

of course decompose that last use case diagram into the two following use case diagrams: 

1. the first one providing just a hierarchical representation of all missions of S, which shall be 

naturally called the Mission Breakdown Structure (MBS) of S142, 

2. the second one providing the indication of the stakeholders that contribute to each mission 

of the system, whose semantics is equivalent to a mission / stakeholder allocation matrix. 

Note finally that if no hierarchically related missions occur when modelling a given use case diagram, 

the semantics of such a diagram is completely contained within the associated operational scenario 

diagram (see next paragraph). One shall then decide the diagram to take since the use case diagram 

has no need with the associated operational scenario diagram (the converse being not true).  

                                                           
141 Let UC(S) be a use case diagram associated with a given system S. A mission which is put in the square part of UC(S) and 
which is connected through lines to stakeholders S1, … , Sn within UC(S) is then formally a function of the system resulting 
from the integration of S with S1 up to Sn. 

142 If one decides to model such a Mission Breakdown Structure (MBS), one must beware to the readability of such a view. 
All the recommendations based on the 7x7x7 rule that we previously gave for the stakeholder and the need architecture 
diagrams will then of course also apply – mutatis mutandis – in order to efficiently model the MBS. 
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4.2.4 Operational Scenario Diagrams 

Let again S be a system, Env(S) be its reference environment and q(S) be an operational context of S. 

An operational scenario diagram associated with S and q(S) is then a dynamic representation of the 

missions achieved through the collaboration of S and its external systems within Env(S), during the 

period of time which is modeled by q(S), which explicitly specifies all interactions occurring between 

S and the stakeholders – or equivalently the external systems – of its reference environment.  

The following Figure 45 shows an example of operational scenario diagram, associated with the 

“Reparation” operational context of an electrical toothbrush. We refer to the suitable paragraph of 

subsection 2.4.2 for all details on the semantics of the below representation. 

 

 

Figure 45 – Example of operational scenario diagram for an electronical toothbrush 

An operational scenario diagram provides therefore an explicit algorithmic description which models 

the behavior of the environment of a given system during a given operational context. As already 

stated in the last paragraph, one must always choose whether using either a use case diagram, or an 

operational scenario diagram to specify an operational context, when no hierarchically related 

missions occur within the use case diagram, since this last diagram will not add any semantics to the 

corresponding operational scenario diagram. 

4.2.5  Operational Flow Diagram 

Let S be a system. The operational flow diagram associated with S is a consolidated description of all 

operational flows associated with S and of respectively: 

1. their logical relationships,  

2. their abstraction relationships143. 

It plays therefore the role of the operational “data model”144 of the system. Note that one also may 

split this diagram into two diagrams, each of them covering the two above points.  

                                                           
143 We recall that a flow A is abstracted by a flow B if and only if A is a special instance of B. In relativist mechanics, Matter is 
for instance abstracted by Energy.   
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Figure 46 below shows an example of (partial) operational flow diagram, associated with an electrical 

toothbrush. The different logical relationships, which exist between the various operational flows (or 

objects) represented in that diagram, are modeled by rigid lines (without any arrow) labelled with 

the denomination of the corresponding relationship. Note that one usually uses a verb – in the third 

form of singular – to name such a logical relation: in an operational flow diagram, the line connecting 

a flow of type A with a flow of type B that represents a logical relation between A and B is typically 

labeled by a verb such as “is related to” in order to express that “A is related to B” or that “B is 

related to A”. To avoid ambiguity, one places the relationship denomination closer to the first term 

of such a logical relationship.145 

One may also put on the extremity of these lines an indication of the arity of these relationships: if n 

operational flows of type A can be associated with m operational flows of type B within a given 

logical relation, one just puts a label with “n” (resp. “m”) at the A-extremity (resp. B-extremity) of the 

line put between A and B that models the corresponding relation (we recall that (n,m) is called the 

arity of such a logical relationship). Note also that, by convention, one puts “*” instead of a natural 

number when there are not known limits to the number of involved elements.  

Finally, on another totally different hand, the abstraction relationships that are provided in the above 

diagram are modeled – according to a classical convention – by squared arrows. 

  

 

Figure 46 – Example of operational flow diagram for an electronical toothbrush 

As already stated the operational flow diagram defines the operational flow or object model of a 

given system. It is completely “dual” to the environment, use case or operational scenario diagrams 

since it focuses on flows, and not on the different functions, either of the system or of its reference 

environment, that are producing these flows. Unfortunately most of engineers, who usually do not 

have any computer science or software engineering background, do not understand the importance 

and the value of this new type of flow-oriented diagram … 

                                                                                                                                                                                     
144 Beware that, even if we use the syntax of a data model for the operational flow diagram, this last diagram is not really a 
data model since it does not represent (only) data, but also physical objects, business objects or even informal information 
that may be exchanged by “humanware” stakeholders of a given system. 

145 Strictly speaking one should put two labels on each line between any flow A and any flow B in order to express both the 
logical relations between A & B and between B & A. However this would be too heavy which explains our convention.  
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We must therefore emphasize that such a diagram is of high importance since it rationally describes 

in a consolidated and organized way all inputs and all outputs of a given system. Hence it gives the 

operational “dictionary” of the system, that is to say the list of all objects that are operationally 

manipulated by the system. This dictionary is of high value for ensuring a common vision between all 

project actors involved in the operational architecting process: these actors shall normally – in an 

ideal world – only use the terms of that dictionary when discussing of an operational object. One may 

easily understand that such a principle allows to avoid any ambiguity between the system designers 

and the project system stakeholders, but also within the different specialty engineers. It is thus key 

for ensuring a good collaboration between all these actors.  
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Chapter 5 – Defining What shall Do the 

System: Functional Architecture 

5.1 Why Understanding What Does the System?  

Functional architecture, or equivalently functional analysis, intends to describe precisely the different 

functions of a system and their relative interactions146. The core motivation of functional architecture 

is to start understanding and specifying in details the system, but only in terms of behaviors – i.e. in 

other terms, to understand and specify what does the system – and not of concrete structure, i.e. in 

its functional nature … as one would have easily guessed! 

It is indeed important to have first a functional description of a system, and not to dig immediately in 

the technique, if one wants to be able to rationally manage trade-offs between different options147. 

Functional architecture is indeed usually independent of the technological choices148 – at least at 

some level of abstraction – which means that functionally reasoning – of course at the good level of 

abstraction149 – on a system allows to reason at the same time on many different constructional 

options that we will be able to compare and to evaluate later (see Chapter 7 dedicated to these 

trade-off analyses). One must indeed understand that skipping functional analysis by directly going to 

technical design is a very bad practice, even if widespread in engineering organizations, since it just 

means that one makes a very strong design choice without even being conscious of that choice. As a 

consequence, one will just be glued in that choice, without being able to move to radically different 

options that may be more adapted.  

We must also stress that functional architecture is absolutely fundamental to capture emergence and 

transversal behaviors that can only be modeled using its tools. By definition, all emergent behaviors 

can indeed not been captured by constructional architecture since they are functional properties of 

an integrated system (we refer to subsection 0.2 for more details). One must hence use functional 

architecture to describe and model such properties. As an immediate consequence, functional 

architecture is key tool to structure transversal collaboration in an engineering organization whose 

purpose is indeed just to manage efficiently the emergent transversal behaviors of a system.  

                                                           
146 And also how these functions are connected to missions. This point – even if important – will however not addressed in 
this pocket guide since it can be easily addressed through a suitable allocation matrix. 

147 Functional architecture allows in particular to make early cost analysis as soon as one have an idea of the average cost of 

an elementary function (see also the Constructive Cost Model for Systems – COSYSMO – [79]).  Such a feature is especially 

interesting for trade-offs that may also be done at functional level (in order to choose between two competing functional 

architectures for a given system). 

148 The car function “Produce torque” is for instance totally independent of the technology: it exists on a car either with a 
thermic, or an electrical engine.   

149 As a consequence of that simple remark, functional architecture is absolutely of NO USE if its analyses go too much in 
the detail. Detailed functional architecture indeed 1) either overlaps with constructional architecture as soon as detailed 
functions identify with the high level functions of the components of the considered system, 2) or be totally misaligned with 
its constructional architectural (which means that the identified functions do not naturally map with components). In the 
first case, functional architecture overlaps with constructional architecture since the two analyzes do provide exactly the 
same semantics. In the second case, functional architecture is dangerous since its results – which have here no concrete 
value – may mislead the system designers. In the two case, it is therefore a waste of time and money.  
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Last, but not least, functional architecture also allows to organize a system in functionally decoupled 

– as much as possible – sub-systems. This is very important if one wants to avoid too many impacts 

when there is a change in a system design150. This idea gives rise to layered functional architectures 

where each functional layer is strictly functionally segregated from the other ones by rigid standard 

functional interfaces that are managed in configuration. This architectural functional segregation / 

decoupling principle provides huge flexibility: in an ideal world, one will indeed be able to change a 

function in one layer without any impact on the other layers, as soon as the functional interfaces 

between layers are respected. We refer to the concrete examples of systems organized according to 

such a principle – that is to say computers, mobile phones or communication networks – that are 

provided in the functional architecture subsection of section 2.2. 

 

Transversal Behaviors are Crucial to Master: the Airport Radar Case 
 
ALTHEIS is a leading airport radar company in the world. They developed a new airport radar 
on the basis of a modular generic functional architecture, each generic functional module 
being devoted to a certain part of a radar treatment chain and managed by a dedicated 
engineering team. The idea was to replace development, when dealing with a specific radar 
deployment, by parametrization. Each generic functional module had thus to be specifically 
parametrized when instantiated on a given concrete airport application. 

However the overall amount of parameters to manage was quite high: around one million 
elementary parameters that could be organized in around 50.000 high level parameters, 
each of them with a specific business meaning, were indeed managed by the development 
engineers. This huge complexity lead initially to what could have become a real industrial 
disaster: when a radar was parametrized and put in service, it happened that the radar 
never stabilized since bugs were permanently appearing on the field which regularly obliged 
the radar to go back to the factory to be reparametrized, which could only be done by the 
development team due to the technicity of the parametrization. This situation was terribly 
uncomfortable and clearly economically not sustainable151.   

CESAMES was appointed to analyze and to try to solve that issue. It appeared that its root 
cause was connected to the lack of a shared and explicit radar functional architecture. When 
the parametrization was initially done, each team in charge was indeed not conscious at all 
of its functional interdependence – through transversal functions – with the other teams. As 
a consequence, each parametrization done locally at the level of one team was in conflict 
with the other parametrizations, which lead to the observed problems. 

The solution – provided by CESAMES – was to architecture all parameters in alignment with 
the radar Functional Breakdown Structure (FBS), by clustering the parameters according to 
the different functions of the FBS. A parameter architecture team – managed by a functional 
architect – was then created to manage, guarantee and maintain among time the functional 
coherence of each of all these parameter clusters. 

Case study 7 – The Airport Radar Case 

                                                           
150 See the first case study of Chapter 6 to see what can unfortunately happen  in case of a design evolution … 

151 A radar business model is indeed based on first a fixed initial price that just covers the development costs and secondly 
yearly maintenance fees on which the constructor is making its benefit. One can thus easily understand that permanent 
bugs are just destroying the radar business model.  
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5.2 The key Deliverables of Functional Architecture 

For any system S, functional architecture has five core types of deliverables: 

1. the functional requirement architecture diagram that hierarchically organizes all functional 

requirements – with respect to S – according to an refinement hierarchy, 

2. the functional mode diagram that describes how S passes – with indication of the associated 

events – from a functional mode to another one, starting from its birth up to its death,  

3. the functional decomposition & interaction diagrams that are describing – in a purely static 

way – the functions of S with their interactions152, 

4. the functional scenario diagrams that are describing – in a dynamic way – the interactions 

taking place between the functions of S, in a given functional mode,  

5. the functional flow diagrams that synthetizes all flows – with their logical relationships –

absorbed or produced by the functions of S during the “functional mode cycle”153 of S. 

These different types of deliverables are presented more in details below.  

5.2.1  Functional Requirement Architecture Diagram 

Let S be a system. The functional requirement architecture diagram of S is then a hierarchical 

exhaustive representation of all functional requirements of S, a functional requirement R1 being 

under another functional requirement R2 in this hierarchy if and only if one can logically deduce R1 

from R2154. In this last situation, one says then more precisely that R2 refines into R1, which explains 

why one speaks of a functional requirement refinement hierarchy. 

 

 

Figure 47 – Example of a functional requirement architecture diagram for an electronical toothbrush 

Figure 47 illustrates here a (partial) functional requirement architecture diagram for an electronic 

toothbrush, a functional requirement being – classically and exactly similarly to a need – represented 

                                                           
152 Usually only at global level, but also possibly in only a given functional mode. 

153 That is to say the period of time modeled by the functional mode diagram. 

154 Remember that functional requirements are logical predicates (see subsection 2.4.3). 
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here by a 2-part box, whose first top part is a short name summarizing the functional requirement 

scope and second bottom part is the functional requirement statement, the refinement relations, on 

which relies the functional requirement hierarchy, being – also classically – represented by arrows. 

Note that exactly the same issue already pointed out for the need requirement architecture diagram 

takes also place with the functional requirement architecture diagram: organizing a functional 

requirement refinement hierarchy is indeed always difficult since one shall avoid to have too much 

functional requirements of first level, but of course also too many levels of refinements if one wants 

to be able to efficiently use such a view. The 7x7x7 rule (see first part of subsection 3.2) is again a 

precious tool to handle this real difficulty. As a consequence, a typical “good” functional requirement 

architecture diagram associated with a given system shall have no more than 7 high level functional 

requirements, each of them refined in around 7 medium level functional requirements, finally also 

refining in the same way into 7 low level functional requirements. Note again that the number 7 shall 

just be taken as an order of magnitude. Obtaining up to 10-12 high level functional requirements in a 

functional requirement architecture diagram could of course work: however one must probably not 

go further without analyzing whether this number is justified. Finally one shall not hesitate to 

construct as many additional functional requirement architecture diagrams as necessary, for refining 

such an analysis as soon as all relevant functional requirements are not derived and/or captured.  

5.2.2  Functional Mode Diagram 

Let S be again a system. The functional mode diagram of S is then a representation of: 

 the functional modes of S, with their relative temporal relationships (consecutiveness, 

inclusion or simultaneity)155, 

 the events that cause the different transitions between each functional mode of S and the 

immediately consecutive ones. 

The standard representations of the temporal relations between functional modes introduced above 

are given – mutatis mutandis – by Table 10, if one now interprets C and D as functional modes. 

 

 

Figure 48 – Example of functional mode diagram for an electronical toothbrush 

                                                           
155 We refer to the second paragraph of subsection 4.2 in this matter. 
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The above Figure 48 provides in particular an illustrative functional mode diagram associated with an 

electronical toothbrush, taking here the standard representation of functional modes and of their 

temporal relationships that we introduced, when events – that induce functional mode transitions – 

are modeled by arrows labelled with the name of the relevant event. Note also that the initial (resp. 

termination) events in each functional mode do not respect this rule since they are conventionally 

modeled by small black circles (resp. by white circles containing a black circle). 

 
It is finally important to understand that the functional mode diagram is key since it models – from a 

functional perspective – time. Following the intuition that we developed at the end of the second 

paragraph of section 4.2, one could say that the next diagrams – i.e. the functional decomposition & 

interaction diagrams – are modeling the “functional space” in which functions are evolving. Since 

space and time are always required to specify any functional behavior (that takes place “functionally 

somewhere” at a certain time), these two diagrams are completely complementary.  

5.2.3  Functional Decomposition & Interaction Diagrams 

Let S be a system. The functional decomposition diagram associated with S is then a hierarchical 

representation of the functions of S, a set F1, F2, …, FN of functions being under another function G 

in this hierarchy if G is the result of the integration – in the meaning of Definition 0.5156 – of the 

functions F1, …, FN157 (F1, …., FN are then classically called “sub-functions” of G). The functional 

interaction diagrams associated with S are then just the different representations – there is one 

functional interaction diagram per integration relationship involved in the functional decomposition 

diagram – of each such integration relationship that does exist between the different functions 

appearing in the hierarchy modeled by the functional decomposition diagram. 

Figure 49 below now provides an illustrative partial example of functional decomposition diagram for 

an electronic toothbrush, where the integration relationships on which this hierarchy relies are – 

quite classically – represented by squared arrows. 

 

 

Figure 49 – Example of a functional decomposition diagram for an electronical toothbrush 

                                                           
156 Considered here uniquely for its functional scope 

157 Due to our definition of the integration operator, this hierarchy is therefore an abstraction hierarchy. 
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We also give an example of a functional interaction diagram for an electronical toothbrush that can 

be found in Figure 50. In this example, we modeled the integration relationship existing between the 

global function of the toothbrush and its first “sub-functions” (using the formalism of a classical 

“activity diagram” in the UML or SysML meaning; see [20] or [34]). Note also that external interfaces 

are here – quite classically – represented by white squares at the border of the oval representing the 

integrated function (here the global function of an electronical toothbrush). 

 

 

Figure 50 – Example of a functional interaction diagram for an electronical toothbrush 

The functional decomposition of a system S modeled by the functional decomposition diagram is also 

classically called the Functional Breakdown Structure (FBS) of S. Similarly to the Mission Breakdown 

Structures that we introduced in the last chapter, it provides the exhaustive dictionary of functions of 

the system and thus has a key role in guaranteeing a common understanding on the functional scope 

of a system, which is mandatory for efficient transversal collaboration between the different actors 

and stakeholders of a system development project.  

One must however beware to the readability of such a view. All the recommendations based on the 

7x7x7 rule that we previously gave for the stakeholder and need architecture diagrams of course also 

apply – mutatis mutandis – to efficiently model the Functional Breakdown Structure of a system. 

Last, but not less important, we refer to Figure 9 in Chapter 0 for a concrete functional interaction 

diagram associated with an aircraft: it represents how all first-level sub-functions may be integrated 

to obtain the high-level global function of an aircraft.  

5.2.4  Functional Scenario Diagrams 

Let again S be a system and q(S) a functional mode of S. A functional scenario diagram associated 

with S and q(S) is then a dynamic representation of the interactions that are taking place between 

the functions of S during the period of time which is modeled by q(S).  

The below Figure 51 shows an example of functional scenario diagram, associated with the “Active” 

functional mode of an electrical toothbrush. We refer to the suitable paragraph of subsection 2.4.2 

for the fundamentals of the semantics of this representation. However we were obliged to introduce 

richer semantics with respect to the one that was introduced in subsection 2.4.2. The below diagram 
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indeed expresses that as far as the electronic toothbrush is in active mode (which was modeled by 

the big box with “loop” on its top left and the “[active mode]” indication158 in its top middle), it shall 

do in parallel (which was modeled by the big box with “par” on its top left), that is to say at the same 

time, three types of operations (that are separated by dashed lines in the “alt” big box): the first one 

being brushing force management, the second one being brushing data management and the third 

one being energy management. For the sake of completeness, one shall also know that there exists 

an “alt” (for alternatives) box which allows to express “if then else” situations159. 

 

 

Figure 51 – Example of a functional scenario diagram for an electronical toothbrush 

A functional scenario diagram provides the explicit “algorithm” which is underlying to the functional 

behavior of the system in a given functional mode. This is key to understand finely what – at least 

functionally – happens during a given functional mode. The enriched semantics that we introduced 

indeed allows to express any distributed algorithmic property of a system160. 

5.2.5  Functional Flow Diagram 

Let S be a system. The functional flow diagram associated with S is a consolidated description of all 

functional flows associated with S and of respectively: 

1. their logical relationships,  

2. their abstraction relationships (see the last paragraph of Chapter 4). 

                                                           
158 This indication means “as soon as”. Hence we meant here “as soon as the system is in active mode”. 

159 The “if then else” situation is expressed by a big box labelled “alt” on its top right, split in two parts – Part 1 (top) and 
Part 2 (bottom) –  separated by a dashed line, with a “condition” denomination at its top middle. Its semantics is that when 
the “condition” is satisfied (resp. not satisfied), the system shall do the instructions of Part1 (resp. Part2). 

160 This comes from the fact that usual algorithmic only requires the “while” (modeled by the “loop” box) and the “if then 
else” (modeled by the “alt” box) operators. When one passes to distributed – that is to say parallel – algorithmic, it is then 
sufficient to add the “parallel” operator (modeled by the “par” box).  
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Hence it plays the role of the functional “data model”161 of the system. Note that one also may split 

this diagram into two diagrams, each of them covering the two above points.  

Figure 52 below shows an example of (partial) functional flow diagram, associated with an electrical 

toothbrush. Its syntax follows exactly the same principles than for the operational flow diagram (see 

the last paragraph of the previous chapter). 

 

 

Figure 52 – Example of functional flow diagram for an electronical toothbrush 

As already stated the functional flow diagram defines the functional flow or object model of a given 

system. It is completely “dual” to the functional decomposition, interaction or scenario diagrams 

since it focuses on flows and not on the functions of the system that are producing these flows.  

We must thus again emphasize that such a diagram is of high importance since it rationally describes 

in a consolidated and organized way all inputs and all outputs of the functions of a given system. 

Hence it gives the functional “dictionary” of the system, that is to say the list of all objects that are 

functionally manipulated by the system. This dictionary is of high value for ensuring a common vision 

between all project actors involved in the architecting process: these actors shall normally – in an 

ideal world – only use the terms of that dictionary when discussing of a functional object. One may 

easily understand that such a principle allows to avoid any ambiguity between the different project 

actors. It is thus key for ensuring a good collaboration between these actors. 

 

                                                           
161 Beware that, even if we use the syntax of a data model for the functional flow diagram, this last diagram is not really a 
data model since it does not represent (only) data, but also physical objects, business objects or even informal information 
that may be exchanged with “humanware” stakeholders of a given system. 
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Chapter 6 – Deciding How shall be Formed 

the System: Constructional Architecture 

6.1 How to Understand How is Formed the System? 

Constructional architecture, or equivalently constructional analysis, intends to describe precisely the 

different components of a system, but also all their relative interactions162. The core motivation of 

constructional architecture is to concretely understand and specify in details the system, in terms of 

structure – i.e. in other terms, to understand how is formed the system – and not of behaviors, i.e. in 

its constructionally nature … as one would have naturally guessed! 

Constructional architecture is key since it consolidates all architectural analyses in a concrete vision 

of the considered system. It makes in particular the synthesis between a top-down design approach, 

as provided by the systems architecting process, and a bottom-up one, which is typically induced by 

the constraints due to the existing product architecture or by the new possibilities brought by the 

advances of technology. All the idea of constructional architecture is thus to find the best possible 

balance between these two apparently contradictory, but in reality completely complementary, 

approaches. As a consequence, constructional architecture intends to solve a “simple” – to state, but 

not to solve – multi-dimensional optimization problem: “what is the best concrete architecture – i.e. 

suitable components with their organization – which answers to the stakeholder needs (top-down 

approach) while integrating all industrial and technological constraints & opportunities (bottom-up 

approach), within classical cost, quality, delay and performance objectives?”163 This problem is of 

course highly non-trivial and highly complex in practice due to its large number of parameters and 

variables. The motivation of constructional architecture is – quite modestly – to propose some key 

tools that may contribute to that objective. 

 

Figure 53 – Design Structure Matrix (DSM) of a system 

Constructional architecture also allows to integrate “by design” some important key architectural 

principles within a system. The best way to prevent the propagation of a local problem throughout a 

                                                           
162 And also how these components are connected both to missions and functions. This point – even if important – will 
however not addressed in this pocket guide since it can be easily managed through suitable allocation matrices. 

163 It is always important to be able to state property any constructional architecture problem using such a pattern. 
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system and its transformation into a global problem, is for instance to organize the system as an 

integration of decoupled sub-systems, i.e. with minimal mutual interfaces. This property can be easily 

depicted on the Design Structure Matrix (DSM) associated with a given system S – see Figure 53 – 

where one indicates a connection from a sub-system Oi of S to another sub-system Oj of S if and only 

if there is a directed interface from Oi to Oj: minimizing the interfaces of S therefore means finding a 

constructional decomposition minimizing the number of elements of such a matrix. 

Last, but not least, one must point out that constructional architecture is the main input of a series of 

important engineering activities such as specialty engineering analyses, safety analyses, verification 

and validation, that we will however not develop here (see [42], [43], [44] or [66]). 

 

What happens when a System has not a Decoupled Constructional Architecture:  
the Fighter Aircraft F/A-18 Case164 

 
The standard aircraft F/A-19 is a fighter & attack aircraft that was developed by McDonnell 
Douglas for the US Army in the late seventies. It was designed for being aircraft carrier 
based, supporting 3,000 flight hours, 90 minutes average sorties and 7.5 g positive maximal 
accelerations and having 15 years of useful life. 

In the early nineties, the Swiss Army decided to acquire this aircraft. However due to its 
geographic and politic specificities, Switzerland had very different requirements. First due to 
their neutrality policy, they did not wanted a fighter, but an interceptor aircraft. Since 
Switzerland does not have any sea (Leman lake does not count for one …), it was demanded 
to have a land based aircraft. Swiss people do also like that their belongings last a long time, 
so they requested their aircraft to support 5,000 flight hours with a 30 year useful life. 
Finally one shall remember that Switzerland is a very small country with mountains to avoid 
during each sortie, which lead to be able to support on one hand 40 minutes average sorties 
and on the other hand 9g positive maximal accelerations.  

When McDonnell Douglas engineers analyzed these demands, it was quickly understood 
that the US version of the F/A-18 could easily respect the Swiss requirements as soon as its 
less resistant fatigue components were replaced. A deeper analysis showed them that it was 

even sufficient to replace a few – weighting  500 grams – structural aircraft parts made in 
Aluminum by equivalent components made in Titanium (which is much more robust). 

Unfortunately when this – apparently quite small – change was done, the center of gravity 
changed which required stiffening the fuselage and increasing the gross takeoff weight to 
rebalance the aircraft. Due to that various changes, the weight distribution evolved within 
the aircraft, impacting the flight control software which was necessary to redesign. Various 
other changes occurred and at the very end, the industrial construction processes and the 
associated plant were even highly impacted, leading to a 10 million $ overall cost for a little 
initial change of less than one kilogram … 

Well decoupling a system’s constructional architecture is therefore crucial!  

 

Case study 8 – The Fighter Aircraft F/A-18 Case 

                                                           
164 The author is grateful to Professor Olivier de Weck (MIT, USA) who told him this case study. 
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6.2 The key Deliverables of Constructional Architecture 

For any system S, constructional architecture has five core types of deliverables: 

1. the constructional requirement architecture diagram that hierarchically organizes all cons-

tructional requirements – with respect to S – according to an refinement hierarchy, 

2. the constructional mode diagram that describes how S passes – with indication of the asso-

ciated events – from a configuration to another one, starting from its birth up to its death,  

3. the constructional decomposition & interaction diagrams that are describing – in a purely 

static way – the components of S with their interactions165, 

4. the constructional scenario diagrams that are describing – in a dynamic way – the interac-

tions taking place between the components of S, in a given functional mode,  

5. the constructional flow diagrams that synthetizes all flows – with their logical relationships –

absorbed or produced by the components of S during the “configuration cycle”166 of S. 

These different types of deliverables are presented more in details below.  

6.2.1  Constructional Requirement Architecture Diagram 

Let S be a system. The constructional requirement architecture diagram of S is then a hierarchical 

exhaustive representation of all constructional requirements of S, a constructional requirement R1 

being under another constructional requirement R2 in this hierarchy if and only if one can logically 

deduce R1 from R2167. In this last situation, one says then more precisely that R2 refines into R1, 

which explains why one speaks of a constructional requirement refinement hierarchy. 

 

 

Figure 54 – Example of a constructional requirement architecture diagram for an electronical toothbrush 

The above Figure 54 shows a (quite partial) constructional requirement architecture diagram for an 

electronic toothbrush, a constructional requirement being – classically and similarly both to a need 

and to a functional requirement – represented here by a 2-part box, whose first top part is a short 

                                                           
165 Usually only at global level, but also possibly in only a given configuration. 

166 That is to say the period of time modeled by the configuration diagram. 

167 Remember that constructional requirements are logical predicates (see subsection 2.4.3). 
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name summarizing the constructional requirement scope and second bottom part is dedicated to the 

constructional requirement statement, when the different refinement relationships on which relies 

the constructional requirement hierarchy are – also classically – represented by arrows. 

The same issue that was already pointed out, both for need and functional requirement architecture 

diagrams, also happens in the same terms for the constructional requirement architecture diagram: 

organizing a constructional requirement refinement hierarchy is indeed always difficult since one 

shall avoid to have too much constructional requirements of first level, but of course also too many 

levels of refinements, as soon as one wants to be able to efficiently use such a view. The 7x7x7 rule 

(see first part of subsection 3.2) is again precious to handle this real difficulty. As a consequence, a 

typical “good” constructional requirement architecture diagram associated with a given system shall 

have no more than 7 high level constructional requirements, each of them being refined in around 7 

medium level constructional requirements, finally also refining in the same way into 7 low level 

constructional requirements. Note again that the number 7 is just an order of magnitude. Obtaining 

up to 10-12 high level constructional requirements in a constructional requirement architecture 

diagram could of course work: however one must probably not go further without analyzing whether 

this number is justified. Finally one shall not hesitate to construct as many additional constructional 

requirement architecture diagrams as necessary, for refining such an analysis as soon as all relevant 

constructional requirements are not derived and/or captured.   

6.2.2  Configuration Diagram 

Let S be again a system. The configuration diagram of S is then a representation of: 

 the configurations of S, with their relative temporal relationships (consecutiveness, inclusion 

or simultaneity)168, 

 the events that cause the different transitions between each configuration of S and the 

immediately consecutive ones. 

The standard representations of the temporal relations between configurations introduced above 

are given – mutatis mutandis – by Table 10, if one now interprets there C and D as configurations. 

 

 

Figure 55 – Example of configuration diagram for an electronical toothbrush 

The above Figure 55 provides an example of configuration diagram associated with an electronical 

toothbrush, which is here quite simple, taking the standard representation of configurations and of 

                                                           
168 We refer to the second paragraph of subsection 4.2 in this matter. 
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their temporal relationships that we introduced, when events – that induce configuration transitions 

– are modeled by arrows labelled with the name of the relevant event. Note also that the initial 

(resp. termination) events in each configuration do not respect this rule since they are just 

conventionally modeled by small black circles (resp. by white circles containing a black circle). 

The configuration diagram is key since it models – from a purely constructional perspective – time, 

even if it is not immediately obvious to see here. Following the intuition that we developed at the 

end of the second paragraphs of sections 4.2 and 5.2, one could consider that the next diagrams – 

i.e. the constructional decomposition & interaction diagrams – are modeling the “constructional 

space” in which components are evolving. Since space and time are always both required to specify 

any constructional reality (that takes place somewhere at a certain time), one can easily see that 

these two diagrams are completely complementary.  

6.2.3  Constructional Decomposition & Interaction Diagram 

Let S be a system. The constructional decomposition diagram associated with S is then a hierarchical 

representation of the components of S, a set C1, C2, …, CN of components being under another 

component D in this hierarchy if D is the result of the integration – in the meaning of Definition 0.5 – 

of the components C1, …, CN169 (C1, …., CN are then classically called “sub-components” of D). The 

constructional interaction diagrams associated with S are then just the different representations – 

there is one constructional interaction diagram per integration relation involved in the constructional 

decomposition diagram – of each such integration relationship that does exist between the different 

components appearing in the hierarchy modeled by the constructional decomposition diagram. 

The following Figure 56 now provides an illustrative partial example of constructional decomposition 

diagram for an electronic toothbrush, where the integration relationships on which such an hierarchy 

relies are – quite classically – represented by black-squared (resp. white-squared) arrows when the 

low-level component is mandatory (resp. optional – which allows to model product options using this 

last syntax – ) with respect to the depicted integration relationship. 

 

 

Figure 56 – Example of a constructional decomposition diagram for an electronical toothbrush 

                                                           
169 Due to our definition of the integration operator, this hierarchy is therefore again an abstraction hierarchy. 
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We also give an example of a constructional interaction diagram for an electronical toothbrush that 

can be found in Figure 57. It provides the integration relationship existing between the electronic 

toothbrush in its whole and its first “sub-components” as they are appearing above in the previous 

constructional decomposition diagram.  

 

 

Figure 57 – Example of a constructional interaction diagram for an electronical toothbrush 

The constructional decomposition of a system S modeled by the constructional decomposition 

diagram is also classically called the Product Breakdown Structure (PBS) of S. Similarly to the Mission 

or the Functional Breakdown Structures that we introduced in the two last chapters, it provides the 

exhaustive dictionary of components of the system and has a key role in guaranteeing a common 

understanding on the constructional scope of a system, which is mandatory for efficient transversal 

collaboration between the different actors and stakeholders of a system development project.  

One must however beware to the good readability of such a view. Just observe in this matter that all 

the recommendations based on the 7x7x7 rule that we previously gave for the stakeholder and the 

need architecture diagrams of course also apply – mutatis mutandis – for efficiently modeling the 

Product Breakdown Structure of a given system. 

Note also that Figure 9 in Chapter 0, even if formally functionally oriented, can also be easily re-

interpreted as a constructional interaction diagram, here associated with an aircraft: each “box” of 

this diagram, even if, strictly speaking, representing a first-level sub-function of an aircraft, may 

indeed also naturally be interpreted as a first-level sub-system of an aircraft.  

6.2.4  Constructional Scenario Diagram 

Let again S be a system and q(S) a configuration of S. A constructional scenario diagram associated 

with S and q(S) is then a dynamic representation of the interactions that are taking place between 

the components of S during the period of time which is modeled by q(S).  

The following Figure 58 shows an example of constructional scenario diagram, associated with the 

“Children” configuration of an electrical toothbrush. It shows how the electronic toothbrush sends an 

encouraging message to the end-user when in a children configuration (see subsection 2.4.3 for the 
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corresponding illustration). We do refer to the suitable paragraph of subsection 2.4.2 for all the 

details on the semantics of the below representation. 

 

 

Figure 58 – Example of a constructional scenario diagram for an electronical toothbrush 

A constructional scenario diagram provides therefore the explicit “algorithm” which is underlying to 

the constructional interactions of the system that occur in a given configuration. This is key to finely 

understand what concretely happens during a given configuration.  

Observe finally that this last diagram has also a functional nature since it models in a certain way a 

“constructional behavior”: one shall thus always beware not to overlap at this level with functional 

architecture in order to avoid to make two times similar analyses. 

6.2.5  Constructional Flow Diagram 

Let S be a system. The constructional flow diagram associated with S is a consolidated description of 

all constructional flows associated with S and of respectively: 

1. their logical relationships,  

2. their abstraction relationships (see the last paragraph of Chapter 4). 

Hence it plays the role of the constructional “data model”170 of the system. Note that one also may 

split this diagram into two diagrams, each of them covering the two above points.   

The Figure 59 that follows shows an example of (partial) constructional flow diagram, associated with 

an electrical toothbrush. It can be constructed by consolidating all the constructional flows that are 

appearing in the high-level constructional interaction diagram which is provided by Figure 57 for an 

                                                           
170 Beware that, even if we use the syntax of a data model for the constructional flow diagram, this last diagram is again not 
really a data model since it does not represent (only) data, but also physical objects, business objects or even informal 
information that may be exchanged with “humanware” stakeholders of a given system. 
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electronical toothbrush. Its syntax follows exactly the same principles than for the operational & 

functional flow diagrams (see the last paragraph of the last two previous chapters). 

 

 

Figure 59 – Example of constructional flow diagram for an electronical toothbrush 

  
As already stated, such a constructional flow diagram defines the constructional flow or object model 

of a given system. It is therefore completely “dual” to the constructional decomposition, interaction 

or scenario diagrams since it focuses only on flows and absolutely not on the different components 

of the system that are producing these flows.  

We must therefore emphasize that such a diagram is of high importance since it rationally describes 

in a consolidated and organized way all inputs and all outputs of the components of a given system. 

Hence it gives the constructional “dictionary” of the system, that is to say the list of all objects that 

are constructionally – that is to say concretely – manipulated by the system. Hence this dictionary is 

of high value for ensuring a common vision between all project actors involved in the architecting 

process: these actors shall normally – in an ideal world – only use the terms of that dictionary when 

discussing of a constructional object. One may easily understand that such a principle allows to avoid 

any ambiguity between the different project actors. It is thus completely key for ensuring a good 

collaboration between these actors. 
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Chapter 7 – Choosing the best Architecture: 

Trade-off Techniques 

7.1 Systems Architecting does usually not Lead to a Unique Solution 

Systems architecting is not like mathematics since systems architecting issues have commonly never 

only true or false answers, which may be disorientating for the beginner. A systems architecture 

process does indeed classically lead to many different possible and valuable solutions. So the core 

questions in systems architecting are always choice and decision among these various options. The 

key point is of course to be able to make these choices and decisions in the most rational possible 

way, which is the main purpose of systems architecting and of this pocket guide.  

Note first that systems architecture options can occur in each architectural vision: there are usually 

lots of choices to do in terms both of needs or requirements prioritization and of missions, functions 

or components selection. One must in particular always arbitrate between performance and cost in 

any systems development context, under quality and delay constraints. These key indicators lead to 

make regularly arbitrations relatively either to the level of coverage both of stakeholder needs and of 

systems requirements, or on the scope covered by a system’s architecture.  

Trade-offs – that is to say the specific engineering activities that result in making a choice between 

various architectural options – are thus permanent within any systems architecting process where 

decision plays a key role. As a consequence, if one wants these decisions to be as rational as possible, 

one needs both to organize the trade-off processes in the most efficient way and to have rigorous 

methods for taking such decisions on the basis of explicit and shared decision criteria. The trade-off 

techniques presented in this current chapter try to propose a valuable answer to this reasonable and 

strategic objective of any system development process.  

Trade-offs are however never easy. A trade-off is indeed a situation that involves losing one feature 

of a system in return for gaining another quality or aspect. More colloquially, if one thing increases, 

some other thing must decrease. Trade-offs can occur for many reasons, including simple geometry 

(into a given amount of space, one can fit either many small objects or fewer large objects). As 

already mentioned above, the idea of a trade-off always in a system development context implies a 

decision that has to be made with full understanding of both the upside and downside of a particular 

choice, such as when somebody decides whether to invest in stocks (more risky but with a greater 

potential return) versus bonds (generally safer, but lower potential returns).171 

Note finally that “human engineering” is a key point when managing trade-offs. As noticed above, 

making a trade-off in any systems architecting context means eliminating an architectural option for 

choosing another one, which means privileging some part of the organization against another one, 

due to the fact that one shall never forget that there are always people behind systems (see the last 

paragraph of section 2.3). As can be imagined, these human and/or political issues are at the heart of 

the difficulties when managing trade-offs in practice.  

                                                           
171 This paragraph was highly inspired of the Wikipedia article on “Trade-off” (see [97]). 
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Prioritizing a System Budget: the Data Warehouse Case 
 
TELBYTE is a leading communication company in Europe. In order to make offers – as well as 
possible – adapted to their customer needs, the general direction of TELBYTE decided to 
develop a data warehouse172 where all existing customer information shall be stored in 
order to provide suitable data for a number of customer-oriented internal services. 

A scoping study showed that around 1,500 data sources were to be connected with the data 
warehouse in order to be able delivering all the 300 internal services that were requested by 
around 10 marketing-focused teams within TELBYTE. A dedicated project – named APERO – 
was then launched on this basis in order to construct the corporate data warehouse for a 
budget of around 40 million euros. 

Unfortunately 9 months after having started, APERO faced a severe budget restriction – due 
to bad market figures – of 20 %. The project team did not have any idea on how to deliver 
the expected services to the marketing department within a reduced budget of 32 million 
euros. A trade-off was clearly required and APERO asked CESAMES to manage it.  

CESAMES analyzed the situation and understood quickly that the complexity of the project 
was too high and value was totally absent of the way the APERO project was working, which 
explained why the project was not able to manage alone the trade-off it was facing. Several 
actions were then managed in parallel by CESAMES, during around a month, for creating the 
conditions of a successful trade-off through a collaborative prioritization workshop. The first 
one was to reduce the data source complexity: by clustering the initial 1,500 data sources 
according to their origins, it was possible to only handle 250 data clusters. The second one 
was to give 100 tokens to each marketing team and to ask them distributing their tokens on 
the services they were requesting: as an immediate side-effect of putting value at the heart 
of the problem, their number diminishes from 85 % to arrive at only 50 services. Each team 
indeed understood that it was necessary to concentrate their tokens on the services with 
highest value if these services wanted to have a chance to be selected during a collective 
prioritization process173.  

As a consequence, the complexity of the trade-off problem to solve passed from 1,500 x 300  
= 450,000 possible source / service to 250 x 50 = 12,500 possible cluster / service choices to 
arbitrate, that is to say a 97 % reduction of complexity which allowed to make successfully a 
collective arbitration – both of the data clusters to interface with the data warehouse and 
on the precise service scope to offer – during a one-day collective prioritization workshop 
involving all concerned business actors. The result achieved during that workshop allowed 
covering 95 % of the marketing demands within the new 80 % restricted budget174, which 
made everybody happy since renouncements were quite light at the very end. 

Case study 9 – The Data Warehouse Case 

                                                           
172 A data warehouse is a huge data basis, constructing with specific technology to guarantee transactional performance. 

173 One can easily understand that any team which would not have concentrated their token on a limited number of choices 
could not win in a collective prioritization as soon as another team decided to have such a strategy. Hence the best strategy 
for everybody is concentrating the tokens, which is a classical Nash equilibrium in the meaning of game theory (see [87]). 

174 This illustrates another point that one shall in mind when doing trade-offs. Costs are often distributed with respect to 
value according to Pareto laws: 20 % of the costs allow offering 80 % of the value when 80 % of the costs does only deliver 
20 % of the value. This type of law does explain why the arbitration could work in the data warehouse case and why it was – 
in some sense (this case indeed required a lot of work) – so easy to achieve.  
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7.2 Trade-off  Techniques 

7.2.1  General Structure of a Trade-Off Process 

The objective of any trade-off process is to help its involved stakeholders to make a rational choice 

among several possible architectural choices, based on shared decision criteria. As a consequence, 

any trade-off process shall consist in the following main steps: 

1. identify the set of stakeholders involved in the trade-off decision process, 

2. identify & share the architectures that shall be discussed,  

3. define & share the decision criteria to be used, 

4. evaluate each possible architecture according to the decision criteria, 

5. prioritize the evaluated architectures. 

Steps 1 to 3 can be typically prepared by the systems architect alone (or with a small team), without 

opening too much the circle of stakeholders. Steps 4 and 5 shall however necessarily be achieved 

through a collective decision process – typically managed in a collective prioritization workshop – as 

soon as one wants the involved stakeholders to be part of the decision in order them to be 

collectively engaged in the decision (and respect it). Each of these steps is quickly described below. 

The first step – stakeholder identification – is not the easier.  We however will here only to the last 

paragraph of section 2.3 were this question was already discussed. The second step – architecture 

identification – “just” consists in applying all the systems architecture techniques we presented from 

Chapter 3 up to Chapter 6 and tracing the valuable architectural options that occur during the 

systems architecting process. The third step – decision criteria identification – can then rely on need 

and requirements architecture as discussed in the previous chapters: the “good” decision are indeed 

typically structuring high level needs and/or requirements. One thus sees that these three first steps 

totally rely on already discussed systems architecture techniques.  

The fourth step – architecture evaluation – is quite easy since the only complementary technical 

ingredient it requires is to provide an evaluation scale when defining the decision criteria. The main 

difficulty here lies however not in technique, but in the human dimension of that step, that is to say 

in workshop facilitation as soon as one is using a collaborative prioritization workshop to achieve that 

evaluation, as we highly recommend.  

The fifth and last step – prioritization – is the more complex since one cannot apply any deterministic 

protocol to achieve it. Prioritization can only be obtained by a collective discussion, using the results 

of step 4 as an input, without however being prisoners of them, in order to make collectively the 

most rational choice, taking into account all the dimensions of the decision that will be brought by 

the different actors involved in a collective prioritization workshop. 

One shall finally point out that such a technique is not making the decision, just helping to prepare 

it175. Ultimately the real decision can indeed only taken by a suitable system governance board. It is 

thus extremely important to integrate any trade-off technique within a shared governance process 

where roles are transparently distributed between the people involved in the trade-off protocol as 

                                                           
175 This is why one also speaks of decision-aid techniques for such trade-off techniques.  
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presented above and the people involved in governance176, who are the only ones habilitated to take 

the decision as already mentioned above. 

7.2.2  Managing Trade-Offs in Practice 

As already discussed in the last subsection, it is a good practice – that we can only highly recommend 

– to manage trade-offs in practice through collaborative prioritization workshops, involving all key 

actors that may be impacted by the trade-off decision. We would therefore just like to conclude this 

short chapter dedicated to trade-off techniques by presenting some illustrations coming from a real 

collaborative prioritization workshop.  

The first one is an example of vote that took place during such a workshop. Each sticker corresponds 

to a vote of one of the forty-five domain experts who participated to this workshop. These experts 

were asked to evaluate nine architectural options (represented through columns in Figure 60, the 

seven first ones being prepared by the systems architect before the workshop, while the two last 

emerged through the collective discussion during the workshop) in order to know : 

1. their value, measured through the covering of five structuring needs (in green in Figure 60), 

2. their level of risk, measured through four risk factors (in red in Figure 60).  

Each of these value / risk criteria were then evaluated by the involved experts on a low-medium-high 

scale, the evaluation being concretely achieved by putting a sticker on the relevant location of the 

evaluation 12 meters x 1,5 meter panel depicted in the below Figure 60.  

 

 

Figure 60 – Example of a collective vote during a prioritization workshop 

                                                           
176 It is in particular a key good practice to separate completely the roles and not to mix the people who are preparing the 
decision with the people who are taking – formally – the decision.  Such a role separation indeed allows the governance 
body not to follow the recommendation brought by the trade-off process, which may happen – even if normally not if the 
systems architect made a good job – if some strategic decision criteria were not taken into account during the collective 
prioritization workshop.  
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It is also interesting to share the synthetic final evaluation that achieved during this collaborative 

prioritization workshop. The nine architectural options that were analyzed during the workshop are 

now put on a value / risk matrix – each option being now represented by a simple dot in that matrix – 

where one can easily compare them (see below Figure 61). One can then easily see that: 

 architectures S5 and S6 would lead to a project with the maximal level of risk, 

 it is better take S8 rather than S4 and S3, since S8 has more value and less risk than these 

two other variants, the same conclusion occurring for S7 with respect to S4, 

 architectures S0, S1 and S2 have poor business value. 

 

 

Figure 61 – Example of a collective evaluation during a prioritization workhop 

On the basis of that analysis which was collectively shared during the prioritization workshop, the 

participants to the workshop proposed to their governance body to launch a project oriented toward 

architecture S8, with architecture S7 as a fallback option. Their choice was fully confirmed by the 

governance committee that took place in the week following the workshop. As a matter of fact, the 

collective prioritization technique allowed to successively achieve a complex arbitration on a 700 

million euro budget dedicated to a strategic system development project! 
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Chapter 8 – Conclusion 

8.1 A first Journey in Systems Architecting 

This pocket guide intends to offer to the reader a first journey through systems architecting and we 

hope that it was appreciated. We thus explored the following topics as provided in Table 11. 

 
Chapters Topics covered 

Chapter 0 Systems Fundamentals 

Chapter 1 Systems Architecting Motivations 

Chapter 2 CESAM Framework Overview 

Chapter 3 Environment Architecture 

Chapter 4 Operational Architecture 

Chapter 5 Functional Architecture 

Chapter 6 Constructional Architecture 

Chapter 7 Trade-offs Techniques 

Table 11 – Systems architecting topics covered within the pocket guide 

However one shall notice that our pocket guide does of course not cover the full domain of systems 

architecting. We only focus on the fundamentals that every systems architect – even junior – shall 

know. Thus we put the stress on system modelling, since one just cannot do any systems architecting 

activity in practice without models. Models do indeed form the language of systems architecting: 

they can be used to analyze a problem, to describe a system, to elaborate a common vision, to 

communicate on a solution ... The internal coherence of a system model – that leads to permanent 

crossed checking between the various diagrams we introduced – is also a very powerful tool for the 

systems architect in order to be confident in the robustness of an architecture. 

8.2 The other Key Systems Architecting Topics  

We did not discussed in this pocket guide, that was just intended to be an introduction to this huge 

domain177, of many other systems architecting topics – summarized in Table 12 below, that could be 

addressed by all people who wants to specialize in systems architecting. Among them, we may cite a 

first group of three important topics – even if usually not the ones to learn on a first step – that 

should also be part of the common knowledge of any senior systems architect, that is to say:  

 verification & validation (how to guarantee that a real system satisfies to its needs & 

requirements and to its descriptions?),  

 project architecture (how to optimally structure a development project, taking into account 

the constraints coming from systems architecture?),  

                                                           
177 Systems architecting is a continent to explore, to rephrase an expression due to Marcel Paul Schützenberger, one of the 
seminal fathers of modern computer science (personal communication).  
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 collaborative architecture (how to organize efficiently the collaborative between the internal 

and the external actors of a development project?). 

In a second group, we may also distinguish the following three quite specialized – and technically 

much more difficult – topics that may be typically reserved for expert systems architects:  

 safety (how to integrate dysfunctional analyses within a system architecture?178),  

 system family architecture (how to architecture a full family of systems?),  

 system of systems architecture (how to architecture a system of systems?). 

Note finally that there also some other classical topics such as needs capture techniques, advanced 

functional architecture, systems architecture simulation, interface architecture or design to X179 

techniques, that could also be placed in that second group.  

  
Other core topics Specialized topics 

Verification & Validation Safety  

Project Architecture System Family Architecture 

Collaborative Architecture Systems of Systems Architecture 

Table 12 – Other systems architecting topics 

8.3 How to Develop a Systems Architecting Leadership?  

Mastering the techniques contained in this pocket guide would clearly be a first necessary important 

step for any systems architect. However systems architecting cannot and shall not be reduced to 

systems modeling. The core of systems architecting indeed consists in helping system development 

teams to make rational & shared optimal choices in complex environment. As a consequence, the 

main difficulty of systems architecting is not to master modelling in its own, which by the way is not 

easy. The main difficulty of systems architecting is indeed to be able to create a common vision – 

involving all project actors – around the system in development with the help of system models. 

This last point can only be approached through concrete development projects with real experiences 

of consensus building. Understanding the “theory” is clearly not enough as soon as one is dealing 

with human relationships issues which are in fact at the core of systems architecting practice. One 

shall indeed understand that one cannot manage a convergence protocol, in order to create a shared 

vision among project actors on a given topic, in the same way than a technical study or a prototype 

development. When dealing with people, mistakes or bugs are typically forbidden180: contrarily to a 

purely technical problem, human issues shall always be managed with great care. All the complexity 

of the systems architect job is therefore to be able to manage convergence protocols – with their 

inherent socio-dynamic difficulties – in complex technical environments181.  

                                                           
178 The question is absolutely not to become a safefy specialist, which is a totally different type of expertise, but to be able 
to efficiently manage the interface between systems architecture and safety. 

179 X can mean cost (design to cost), value (design to value), maintainability (design to maintainability), etc. 
180 Telling to someone to do something, then sometimes after to do something else, then again after to do something again 
different, will probably never work … 

181 The mix between socio-dynamics and technique is of course the core difficulty of systems architecting in practice. 
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To progress in systems architecting, the systems architect shall thus clearly develop its non-technical 

competency (consensus creation, workshop animation, meeting facilitation, etc.), but which has to 

be applied in technical complex contexts. In this matter, practice is absolutely fundamental. One can 

just not achieve developing leadership in systems architecting without confronting the complexity of 

real development situations. In this matter, one may note that CESAMES is offering dedicated 6 to 10 

month on-the-job trainings in systems architecting. Such trainings are especially devoted to that 

leadership construction through the concrete application of a full systems architecting process on a 

real system and the achievement of a complete systems architecture specification file (we refer to 

the corresponding item in the training section on our website: www.cesames.net).  

8.4 Towards a New Systems Architecture Modelling Language  

Last, but not least, we would like to point out that the different diagrams we introduced in this 

pocket guide were all constructed on the basis of a SysML syntax (see for instance [34]) in order both 

to avoid disorienting the reader and to let him/her able to use standard modeling tools to practically 

apply the material he/she will found in this pocket guide.  

However one can easily see by reading this pocket guide that such syntax is not perfectly adapted to 

the needs of systems architecting, due to the differences and/or discrepancies that exist between the 

different views. The diagrams used to statically specify missions, functions are components together 

with their interactions are for instance not homogeneous, which is clearly absurd182, thus leading to 

lots of easily avoidable – with a good modelling language – technical difficulties while modelling 

systems. We would thus like to launch a call to the systems engineering community for creating a 

architecture-oriented system modelling language with a sound mathematical-based semantics such 

as the one provided by the CESAM framework within this pocket guide. 

 

  

                                                           
182 Other typical issues are also coming from the fact that, in most modelling languages, environment’s objects do not have 
the same type that system’s objects. This is just a terribly bad choice since it prevents to make use of the natural recursion 
brought by a system hierarchy. 

http://www.cesames.net/
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Appendix A – System Temporal Logic 

Formal requirements are expressed in system temporal logic183, a mathematical formalism that we 

did not present below and that we will discuss in full details in this appendix.  

System temporal logic is a formal logic that extends the same classical notion for computer programs 

(see for instance [8], [11], [45], [54], [58], [69] or [64]). Such a logic intends to specify the sequences 

of input/output and internal observations that can be made on a formal system whose input, output 

and internal states sets X, Y, Q and timescale T are fixed. In other terms, system temporal logic 

specifies the sequences O of inputs, outputs and internal states values that can be observed among 

all moments of time t within the timescale T, as stated below: 

O = (O(t)) for all t  T, where we set O(t) = (x(t), y(t), q(t))184. 

It is based on atomic formulae that may be either “TRUE” or equal to O(x, y, q)185 where x (resp. y or 

q) is either an element of the input set X (resp. output set Y or internal states set Q) or equal to some 

special symbol  (that models an arbitrary value), excepted that x, y and q cannot be all equal to . 

TRUE, O(x, y, q) for all x  X  {}, y  Y  {} and q  Q  {} with (x, y, z) ≠ (, , ). 

Equation 2 – Atomic formulae within system temporal logic  

System temporal logic will then manipulate logical formulae – i.e. well-formed predicates – that are 

expressing the expected properties of the sequences of inputs, outputs and state variables of a 

formal system among all moments of time t within a considered timescale. Such a logic involves the 

two following kinds of logical operators (see [3] and [4] for more details): 

 Two classical truth-functional operators: AND and NOT, 

 Two specific temporal operators X (neXt) and U (Until) whose syntax is provided below: 

o X f, meaning that formula f is fulfilled at next state, 

o f U g, meaning that formula f is fulfilled until g becomes fulfilled. 

We will provide soon the system semantics of all these different operators. However we now are in 

position to syntactically define a temporal formula as any well-formed logical formula that may be 

obtained by applying recursively these different logical operators, starting with an atomic formula.  

For the sake of simplicity, one may also introduce, on one hand, two other truth-functional opera-

tors, OR and  (implies), and on the other hand, two other temporal operators,  (eventually) and  

                                                           
183 The system temporal logic that we present here is a system-adaptation of the simplest temporal logic used in theoretical 
computer science, which is called LTL (Linear Temporal Logic; see [8], [11], [45], [54], [64] or [69]). However there exists 
plenty of other more expressive temporal logics (see [11] or [54]) that can also be adapted to a systems engineering context 
if necessary, depending of the level of expressivity that may be requested.   

184 Using here the formalism of Definition 0.1. 

185 As we will see below, O(x, y, z) stands for a predicate that will fix the initial value x(t0), y(t0) and q(t0) of the input, output 
and internal states variables to x, y and q at the initial moment t0 of the considered timescale. 
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(always), which can be expressed using the previous operators (hence they do not extend the power 

of expressivity of the underlying logic), since they allow to state more easily temporal properties: 

 Additional truth-functional logical operators: 

o f OR g = NOT ( NOT f AND NOT g), 

o f  g = NOT f OR g (f implies g), 

 Additional temporal operators: 

o  f = TRUE U f (f will be eventually true at some moment of time in the future), 

o  f = NOT ( NOT f) (f is true at any moment of time). 

To end our presentation of system temporal logic, we must of course define the semantics of the 

different previous logical operators. In other terms, we need to explain when a formal system S 

whose input, output and internal states sets are X, Y and Q and whose timescale is T, will satisfy to a 

temporal formula constructed with these operators, which is expressed by writing S         f, which 

reads that the system S satisfies to the formula f or equivalently that f is satisfied by S.  

This satisfaction relationship       , which provides the semantics of all system temporal formulae, can 

then be defined inductively according to the following properties (where we systematically set below 

S[t] for the system that has the same behavior than S, but whose initial moment is t instead of t0): 

 S       TRUE for any system S, 

 S       O(x,y,q) if and only if x(t0) = x, y(t0) = y and q(t0) = q (when x, y, q ≠ )186, 

 S       f AND g if and only S       f and S       g, 

 S       NOT f if and only if one does not have S       f, 

 S       X f if and only if S[t0+]       f, 

 S       f U g if and only if  t  T such that S[t]       g and S[u]       f for all u  T with u < t. 

It is also interesting to provide explicitly the semantics of the two additional temporal operators that 

we introduced above, as it can be deduced from the previous definitions: 

 S        f if and only if  for all t  T, one has S[t]       f, 

 S        f if and only if there exists t  T such that S[t]       f. 

Our formalism allows to express all usual temporal properties of systems. To be more specific, let us 

now see how to express a system performance property in this system temporal logic framework. To 

this purpose, we need first to introduce the two following logical predicates that are here modeling 

intervals, respectively of input and output values:  

X(x0,x1) = AND O(x,, ) for all x [x0,x1] , 

Y(y0,y1) = AND O(x,, ) for all y [y0,y1] . 

                                                           
186 Where t0 stands for the initial moment of the considered timescale T. 
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A typical performance property stating for instance that a system must always have its inputs lying 

between two values, a and b, and its outputs lying between two other values, c and d, as soon as it 

enters into the internal state q, will then be expressed as follows:  

Performance =   ( O(, , q)  X(a,b) AND Y(c,d) ). 

We can also provide the example of a maintainability property that is generically stated as follows, 

expressing simply here that a system that satisfy such a property must always go back to a “normal” 

state when it enters in a non-“normal” state at a certain moment of time: 

Maintainability =   ( NOT O(, , “normal“)   O(, , “normal“) ) . 

In the same way, a safety property would finally be generically defined by expressing that a system 

shall never be in a non-safe state, which can be stated as a system temporal logic invariant: 

Safety =  ( NOT O(, , “non-safe“) ) . 
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Appendix B – Classical Engineering Issues 

We shall now present several classical engineering issues on illustrative examples. These issues are 

indeed representative of the typical problems addressed by systems architecting. We classified them 

in two categories: on one hand, product problems, referring to purely architectural flaws leading to a 

bad design of the product, and on the other hand, project problems, referring to organizational issues 

leading to a bad functioning of the project. An overview of these different problems is presented in 

Table 13 below. The details of our examples & analyzes will be found in the sequel of this appendix.  

 Product problems  

o Product problem 1 – The product system model does not capture reality    

 Typical issue: the system design is based on a model which does not match with reality 

 Example: the failure of Calcutta subway 

o Product problem 2 – The product system has undesirable emergent properties  

 Typical issue: a complex integrated system has unexpected and/or undesired emerging 

properties, coming from a local problem that has global consequences 

 Example: the explosion of Ariane 5 satellite launcher during its first flight  

 Project problems 

o  Project problem 1 – The project system has integration issues 

 Typical issue: the engineering of the system is not done in a collaborative way 

 Example: the huge delays of the Airbus A380 project 

o Project problem 2 – The project system diverts the product mission 

 Typical issue: the project forgets the mission of the product 

 Example: the failure of the luggage management system of Denver airport 

Table 13 – Examples of typical product and project issues addressed by systems architecting 

B.1 Product problem 1 – The product system model does not capture reality 

To illustrate that first product architecture issue, we will consider the Calcutta subway case187 which 

occurred when a very strong heat wave (45°C in the shadow) stroke India during summer time. The 

cockpit touch screens of the subway trains became then completely blank and the subway drivers 

were therefore not able anymore to pilot anything. As a consequence, the subway company stopped 

working during a few days, which lead moreover to a huge chaos in the city and to important 

financial penalties for the subway constructing company, until the temperature came back to normal, 

when it was possible to operate again the subways as usually.  

To understand what happened, the subway designers tested immediately the touch screens, but 

these components worked fine under high temperature conditions. It took then several months to 

                                                           
187 This case is not public. We were thus obliged to hide its real location and to simplify its presentation, without however 
altering its nature and its systems architecting fundamentals.   
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understand the complete chain of events that lead to the observed dysfunctioning, which was – quite 

surprisingly for the engineers who made the analysis – of systemic nature as we will now see.  

The analysis indeed revealed that the starting point of the problem were the bogies, that is to say the 

mechanical structure which is carrying the subway wheels. Each subway wagon is supported by two 

bogies, each of them with four wheels. The important point is that all these bogies were basically 

only made with metal. This metal expanded under the action of high heat, leading to an unexpected 

behavior of the bogies that we are now in position to explain.   

One must indeed also know that to each bogie is attached a braking system. These braking systems 

are in particular regulated by the central subway computer where a control law was embedded. The 

control law obliges each local braking system on each bogie to exert a braking force which shall be 

between two safety lower and upper borders188, when braking is initiated. The role of the central 

computer is thus to ensure that the two safety borders are always maintained during braking, which 

is achieved by relaxing or increasing the braking force on a given braking system.   

The key point was that the underlying control law was not valid at high temperature. This control law 

was indeed designed – and quite robust in that case – in a Western environment where strong heat 

never occurs. Hence nobody knew that it was not correct anymore in such a situation.  

 

 

Figure 62 – The Calcutta subway case 

What happened can now be easily explained. The high temperature indeed provoked the same metal 

expansion among the different subway bogies. Hence all bogies were continuously working out of 

their safety borders during braking. But the computer was not aware of that situation and continued 

to try to bring back all braking systems inside their safety borders, applying its fixed control law that 

was unfortunately false in this new context. As a consequence, there was a permanent exchange of 

messages between the central computer and the numerous braking systems along the subway. It 

resulted in an overload of the network which was dimensioned to support such a heavy traffic. The 

                                                           
188 Braking forces can indeed not be neither too strong (in order to avoid wheels destroying rails), nor too weak (in order to 
avoid wheel slip which will result in no braking at all).  
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observed effect on the touch screen was thus just a side effect of this overload, due to the fact that 

the touch screen is also connected to the central computer by the same network, which explains why 

nothing wrong was found at the touch screen level.  

We can thus see that this case highlights a typical modeling problem, here the fact that the braking 

control law was false in the Indian high temperature context, but also an integration issue189, that 

ultimately led to an operational failure through a “domino” effect190, where an initial local problem 

progressively propagated along the subway and resulted in a global breakdown of the system. One 

shall thus remember that it is a key good practice to permanently check and ensure the consistency 

between a system model and the reality it models, since reality will indeed always be stronger than 

any model, as illustrated by the Calcutta subway case.  

Note finally that this kind of modeling problem is typically addressed by systems architecting, which 

proposes an answer through “operational architecting” (we refer to both Chapter 3 and Chapter 4 for 

more details). Such an analysis indeed focuses on the understanding of the environment of the 

concerned system. In the Calcutta subway, a typical operational analysis would have consisting in 

considering India as a key stakeholder of the subway and then trying to understand what is different 

in India, compared to the Western countries where the subway was initially developed. It is then 

easy to find that very strong heat waves do statistically occur in India each decade which creates an 

Indian specific “High temperature context” that shall be specifically analyzed. A good operational 

systems architecting analysis shall then be able to derive the braking system lifecycle, presented in 

Figure 63, with two states that are respectively modeling normal and high temperature contexts and 

two transitions that do model the events191 that create a change of state and of braking control law.   

 

Figure 63 – The missing operational analysis in the Calcutta subway case 

                                                           
189 In that case, all components are indeed working well individually. The problem is a subway system level problem that 
cannot be found in one single component, but rather in the bad integration of all involved components.  

190 Another classical example of a domino effect is provided by O. de Weck [28] who described the collapse of the redesign 
of the US F/A-18 aircraft fighter for the Swiss army. This aircraft was initially designed in 1978 for the US Navy as a carrier-
based fighter and attacker, with 3,000 flight hour’s expectation, missions with average duration of 90 minutes and maximal 
acceleration of 7.5 g and 15 years of useful life. As a consequence of the neutral policy, inland, small size and mountainous 
nature of Switzerland, this country wanted a based-land interceptor aircraft, with 5,000 flight hour’s expectation, missions 
with average duration of 40 minutes and maximal acceleration of 9.0 g and 30 years of useful life. Engineers analyzed that it 
was sufficient to change some non-robust fatigue components near the engine, made in Aluminum, in order to meet Swiss 
requirements. These components were then redesigned in Titanium. Unfortunately a shift of the center of gravity of the 
aircraft was then created and one needed to reinforce the fuselage to solve that issue. This other change lead to transversal 
vibrations that required other reinforcements of weights and modifications in the flight control system. Many changes 
continued to propagate within the aircraft up to impacting the industrial processes and the organization of the construction 
factory. 500 grams changes lead thus finally to 10 million dollars modifications that were never expected. 

191 Here the fact that the temperature is higher (resp. lower) that some threshold T0 (resp. T1) when the braking system is 
in “Normal” context (resp. “High temperature” context).  



118 

Such a diagram is typically an (operational) system model. It looks apparently very simple192, but one 

must understand that introducing the “High temperature” context and the transition that leads to 

that state will allow avoiding a stupid operational issue and saving millions of euros...  

B.2  Product problem 2 – The product system has undesirable emergent properties 

The second product-oriented case study that we will discuss is the explosion of the very first satellite 

launcher Ariane 5 which is well known due to the remarkable work of the Lions commission, who 

published a public detailed and fully transparent report on this accident (see [56]). This case was 

largely discussed in the engineering literature, but its main conclusions were rather focused on how 

to better master critical real-time software design. We will here present a systems architecting 

interpretation of that case, which, in the best of our knowledge, was never made up to now.  

Let us now remember what happened on June 4, 1996 for the first flight of Ariane 5.  First of all, the 

flight of this satellite launcher was perfect from second 0 up to second 36 after take-off. At second 

36.7, there was however a simultaneous failure of the two inertial systems of the launcher that lead 

at second 37 to the activation of the automatic pilot which misunderstood the error data transmitted 

by the inertial systems. The automatic pilot corrected then brutally the trajectory of Ariane 5, leading 

to a mechanical brake of the boosters and thus to the initiation of the self-destruction procedure of 

the launcher that exploded at second 39. 

 

 

Figure 64 – The Ariane 5 case 

As one can easily guess, the cost of this accident was tremendously high and probably reached 

around 1 billion euros. One knows that the direct cost due to the satellite load lost was around 370 

million euros. But there was also an induced cost for recovering the most dangerous fragments of the 

launcher (such as the fuel stock) that crashed in the (quite difficult to access) Guyana swamps, which 

tool one month of work. Moreover there were huge indirect costs due to Ariane 5 program delaying: 

                                                           
192 This simplicity is unfortunately an issue for systems architecting. Most of people will indeed agree to the fact that one 
cannot manipulate partial differential equations without the suitable studies in applied mathematics. But the same people 
will surely think that no specific competency is required to write down simple operational models such as the one provided 
by Figure 63, which is unfortunately not the case. We indeed do believe that only good systems architects can achieve such 
an apparently simple result, which will always be the consequence of a good combination of training and personal skills. 
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the second flight was only performed one year later and it took three more years to perform the first 

commercial flight of the launcher, by December 10, 1999. 

As already stated, the reason of that tragic accident is fortunately completely analyzed through the 

Lions commission report (cf. [56]). The origin of the accident could indeed be traced back to the 

reuse of the inertial reference system (IRS)193 of Ariane 4. This critical complex software component 

perfectly worked on Ariane 4 and it was thus identically reused on Ariane 5 without being retested194 

in the new environment. Unfortunately Ariane 5 was a much powerful launcher than Ariane 4 and 

the numerical values of Ariane 5 acceleration – which are the inputs of the inertial reference system 

– were five times bigger than for Ariane 4. These values were thus coded in double precision in the 

context of Ariane 5, when the inertial reference system was designed to only accept single precision 

integers as inputs. As a consequence, due to the fact that this software system was coded in C195, an 

overflow occurred during its execution. The error codes resulting from that software error were then 

unfortunately interpreted as flight data by the automatic pilot of Ariane 5, which corrected – one 

second after receiving these error codes – the trajectory of the launcher from an angle of more than 

20°, resulting quite immediately in the mechanical breaking of the launcher boosters and one second 

after, in the initiation of the self-destruction procedure. 

The Ariane 5 explosion is hence a typical integration issue196. All its components worked individually 

perfectly, but without working correctly altogether when integrated. Hence one shall remember that 

a component of an integrated system is never correct by itself. It is only correct relatively to the set 

of its interfaced components. When this set evolves, one must thus check that the target component 

is still properly integrated with its environment, since the fact that the IRS module fulfilled Ariane 4 

requirements cannot ensure it fulfils Ariane 5 requirements. 

This example also shows that an – usually not researched – emergent property of integration can be 

death. The Ariane 5 system was indeed incorrect by design since the launcher could only explode as it 

was integrated. In other words, Ariane 5 destruction was embedded in its architecture and it can be 

                                                           
193 An inertial reference system is a software based system that continuously calculates the position, orientation and 
velocity of a moving object. In the context of Ariane 5, it is thus a critical since most of the other systems depend on its 
calculations.   

194 The engineer in charge of the IRS proposed to retest it in the new Ariane 5 environment, but it was decided not to follow 
that proposal in order to save around 120.000 euros of testing costs.  

195 The C programming language is very permissive and does not provide automatic type control. Contrarily a C program will 
always convert any input value into the type that it manipulates. In the Ariane 5 context, the inertial reference system thus 
converted automatically all double integer inputs into single integers, according to standard C language rules. This purely 
syntactic type conversion destroyed the physical meaning of the involved data, leading thus to the observed overflow.  

196 Moreover they were also a number of software engineering mistakes – presented below – that also illustrate the fact 
that the hardware-software integrated nature of the launcher was not really taken into account by the designers. Issue 1 – 
software specificity misunderstanding: only physical (which are statistical) component failures were considered, but logical 
(which are systematic) component failures are of totally different nature. Note that this kind of software failure can only be 
addressed by formal model checking or dissimilar redundancy strategy (which consists in developing two different versions 
of the software component by two different teams on the basis of the same specification in order to ensure a different 
distribution of bugs within the two versions); issue 2 – poor software documentation: the conditions for a correct behavior 
of the IRS module were not explicitly documented in the source code; issue 3 – poor software architecture: the raise of a 
local exception in a software component shall normally never imply its global failure. 
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seen as a purely logical consequence197 of its integration mode. This extremal – and fortunately rare 

– case illustrates thus well the real difficulty of mastering integration of complex systems!  

Note finally that systems architecting can provide a number of methodological tools to avoid such 

integration issues. Among them, one can typically cite interface or impact analyses. In the Ariane 5 

context, a simple interface type check would for instance allowed seeing that the input types of the 

inertial reference system were simply not compatible with the expected ones, which would probably 

permit avoiding a huge disaster!  

B.3  Project problem 1 – The project system has integration issues 

Our first “project architecture” issue is the initial Airbus 380 delivery delay, since it is mainly public 

(see [82] for an extensive presentation of that case study). Let us recall that this aircraft is currently 

the world’s largest passenger airliner. Its origin goes back in mid-1988 when Airbus engineers began 

to work in secret on an ultra-high-capacity airplane in order to break the dominance that Boeing had 

on that market segment since the early 1970s with its 747. It took however a number of years of 

studies to arrive to the official decision of announcing in June 1994 the creation of the A3XX program 

which was the first name of the A380 within Airbus. Due to the evolution of the aeronautic market 

that darkened in that moment of time, it is interesting to observe that Airbus decided then to refine 

its design, targeting a 15–20 % reduction in operating costs over the existing Boeing 747 family. The 

A3XX design finally converged on a double-decker layout that provided more passenger volume than 

a traditional single-deck design, perfectly in line with traditional hub-and-spoke theory as opposed to 

point-to-point theory that was the Boeing paradigm for large airliners, after conducting an extensive 

market analysis with over 200 focus groups.  

In the beginning of 2000, the commercial history of the A380 – the new name that was then given to 

the A3XX – began and the first orders arrived to Airbus by 2001. The industrial organization was then 

put in place between 2002 and 2005: the A380 components are indeed provided by suppliers from all 

around the world, when the main structural sections of the airliner are built in France, Germany, 

Spain, and the United Kingdom, for a final assembly in Toulouse in a dedicated integration location. 

The first fully assembled A380 was thus unveiled in Toulouse by 18 January 2005 before its first flight 

on 27 April 2005. By 10 January 2006, it flew to Colombia, accomplishing both the transatlantic test, 

and the testing of the engine operation in high-altitude airports. It also arrived in North America on 6 

February 2006, landing in Iqaluit, Nunavut in Canada for cold-weather testing. On 4 September 2006, 

the first full passenger-carrying flight test took place. Finally Airbus obtained the first A380 flight 

certificates from the EASA and FAA on 12 December 2006. 

During all that period, orders continued to arrive from the airline companies, up to reaching a bit less 

than 200 cumulated orders, obtained in 2007. The first deliveries were initially – in 2003 – planned 

for end 2006, with an objective of producing around 120 aircrafts for 2009. Unfortunately many 

industrial difficulties – that we will discuss below – occurred and it was thus necessary to re-estimate 

                                                           
197 The IRS component of Ariane 5 consisted in two exactly similar software modules (which, as explained in the previous 
footnote, was of no use due to the logical nature of the failure that repeated similarly in each of these modules). The 36 
seconds delay that separated take-off from the crash of the IRS can thus be decomposed in two times 18 seconds that are 
necessary for each module to logically crash. As a consequence, we can typically state the following architectural “theorem” 
which illustrates the “incorrection” by design of Ariane 5. Theorem: Let us suppose that the IRS component of Ariane 5 has 
N similar software modules. The launcher shall then be destroyed at second 18*N+3. 
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sharply downward these figures each year198 (cf. Figure 65). The very first commercial A380 was 

finally produced by end 2007 and instead of 120, only 23 airliners were delivered in 2009. 

 

Figure 65 – The Airbus 380 case 

These delays had strong financial consequences, since they increased the earnings shortfall projected 

by Airbus through 2010 to € 4.8 billion. It is thus clearly interesting to try to better understand the 

root causes of such an important failure. 

The source of these delays seems to be connected to the incoherence of the 530 km (330 miles) long 

electrical wiring, produced in France and Germany. Airbus cited in particular as underlying causes the 

complexity of the cabin wiring (98,000 wires and 40,000 connectors), its concurrent design and 

production, the high degree of customization for each airline company, and failures in configuration 

management and change control. These electrical wiring incoherencies were indeed only discovered 

at the final integration stage in Toulouse199, which was of course much too late... 

The origin of this problem could be traced back to the fact that German and Spanish Airbus facilities 

continued to use CATIA® version 4, while British and French sites migrated to version 5. This caused 

overall configuration management problems, at least in part because wire harnesses manufactured 

using aluminum, rather than copper, conductors necessitated special design rules including non-

standard dimensions and bend radii. This specific information was not easily transferred between 

                                                           
198 Airbus announced the first delay in June 2005 and notified airlines that deliveries would be delayed by six months. This 

reduced the total number of planned deliveries by the end of 2009 from about 120 to 90–100. On 13 June 2006, Airbus 

announced a second delay, with the delivery schedule slipping an additional six to seven months. Although the first delivery 

was still planned before the end of 2006, deliveries in 2007 would drop to only 9 aircraft, and deliveries by the end of 2009 

would be cut to 70–80 aircraft. The announcement caused a 26 % drop in the share price of Airbus' parent, EADS, and led to 

the departure of EADS CEO, Airbus CEO, and A380 program manager. On 3 October 2006, upon completion of a review of 

the A380 program, Airbus new CEO announced a third delay, pushing the first delivery to October 2007, to be followed by 

13 deliveries in 2008, 25 in 2009, and the full production rate of 45 aircraft per year in 2010. 

199 There exists a video where one can see a poor technician in Toulouse that is unable to connect two electrical wires 
coming from two different sections of the aircraft, due to a lack of 20 centimeters of wire.  
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versions of the software, which lead to incoherent manufacturing and at the very end, created the 

integration issue in Toulouse. On a totally different dimension, the strong customization of internal 

equipment also induced a long learning curve for the teams and thus other delays. 

Independently of these “official” causes, there are other plausible deep causes coming from cultural 

conflicts among the dual-headed French & German direction of Airbus and lack – or break – of 

communication between the multi-localized teams of the European aircraft manufacturer. 

As systems architects, we may summarize such problems as typical “project architecture” issues. The 

issues finally observed at product level are indeed only consequences of lack of integration within 

the project, that is to say project interfaces – to use a system vocabulary – that were not coherent, 

which simply refer, in more familiar terms, to project teams or project tools that were not working 

coherently altogether. It is thus key to have a robust project architecture in the context of complex 

systems development since the project system is always at least as complex as the product system it 

is developing. Unfortunately it is a matter of fact that the energy spent with technical issues is usually 

much more equivalent than the energy spent on organizational issues, which often ultimately lead to 

obviously bad project architectures in complex systems contexts, resulting at the very end into bad 

technical architectures in such contexts.  

B.4  Project problem 2 – The project system diverts the product mission 

As a last example of different types of project issues, we will now consider the case of the Denver 

airport luggage management system failure, which is fortunately well known due to the fact that it is 

completely public (see for instance [27] or [72]). 

Denver airport is currently the largest airport in the United States in terms of total land area and the 

6th airport in the United States (the 18th in the world) in terms of passenger traffic. It was designed in 

order to be one of the main hub for United Airlines and the main hub for two local airlines.  

The airport construction officially started in September 1989 and it was initially scheduled to open on 

October 29, 1993. Due to the very large distance between the three terminals of the airport and the 

need of fast aircraft rotations for answering to its hub mission, the idea of automating the luggage 

management emerged in order to provide quick plane inter-connections to travelers. United Airlines 

was the promoter of such a system which was already implemented in Atlanta airport, one of their 

other hubs. Since Denver airport was intended to be much wider, the idea transformed in using the 

opportunity of Denver’s new airport construction to improve Atlanta’s system in order to create the 

most efficient & innovative luggage management system in the world200. It was indeed expected to 

have 27 kilometers of transportation tracks, with 9 kilometers of interchange zones, on which were 

circulating 4.000 remote-controlled wagons at a constant transportation speed of 38 km/h for an 

average transportation delay of 10 minutes, which was completely unique.  

The luggage management system project started in January 1992, a bit less than 2 years before the 

expected opening of the airport. During one year, the difficulties of this specific project were hidden 

since there were many other problems with more classical systems. However at beginning 1993, it 

became clear that the luggage management system could not delivered at schedule and Denver’s 

                                                           
200 The idea was to have a fully-automated luggage transportation system, with new hardware & software technologies, 
that was able to manage very large volumes of luggage. 
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major was obliged to push back the opening date, first to December 1993, then to March 1994 and 

finally again, to May 15, 1994.  

Unfortunately the new automated luggage management system continued to have strong problems. 

In April 1994, the city invited reporters to observe the first operational test of the new automated 

baggage system saw instead disastrous scenes where this new system was just destroying luggage, 

opening and crashing their contents before them. The major was then obliged to cancel sine die the 

opening date of the airport. As one can imagine, no airline – excepted United – wanted to use the 

new “fantastic” system, which obliged to abandon the idea of a global luggage management system 

for the whole airport. When the airport finally opened in February 28, 1995, thus only United Airlines 

terminal was equipped with the new luggage management system, when the other terminal201 that 

also opened was simply equipped with totally classical systems (that is to say tugs and carts).  

In 1995, the direct additional costs due to this failure were of around 600 M$, leading to more than 

one billion dollars over cost at the very end. Moreover the new baggage system continued to be a 

maintenance hassle202. It was finally terminated by United Airlines in September 2005 and replaced 

by traditional handlers manually handling cargo and passenger luggage. A TV reporter who covered 

the full story concluded quite interestingly203 that “it took ten years, and tons of money, to figure out 

that big muscle, not computers, can best move baggage”.  

 

Figure 66 – The Denver luggage management system case 

When one looks back to that case, it is quite easy to understand why this new automatic luggage 

system collapsed. There were first too many innovations204. It was indeed both the first global 

automated system, the first automatic system that was managing oversize luggage (skis!), the first 

system where carriages did not stop during their service205, the first system supported by a computer 

                                                           
201 It was initially not possible to open the last airport terminal due to the time required for changing the already 
constructed automatic luggage management system to a standard manual one.  

202 Its nickname quickly became the “luggage system of hell”! 

203 That one must always remember that a system can be formed of people only doing manual operations. In most of cases, 
good systems architectures are hybrid with both automatic and manual parts. In Denver’s case, the best solution was 
however purely manual, which United Airlines took ten years to understand.     

204 As a matter of fact, it is interesting to know that Marcel Dassault, the famous French aircraft engineer, was refusing all 
projects with more than one innovation! A strategy that worked quite well for him. 

205 Suitcases were automatically thrown with a catapult… which easily explains the high ratio of crashes. 
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network and the first system with a fleet of radio-localized carriages. There was also an underlying 

huge increasing of the complexity: compared to the similar existing Atlanta system, the new luggage 

management system was 10 times faster, had 14 times the maximal known capacity and managed 10 

times more destinations. Moreover the project schedule was totally irrelevant with respect to the 

state-of-the-art: due to the strong delay pressure, no physical model and no preliminary mechanical 

tests were done, when the balancing of the lines required two years in Atlanta. 

It is thus quite easy to understand that the new luggage management system could only collapse. In 

some sense, it collapsed because the project team totally lost of sight the mission of that system, 

which was just to transport luggage quickly within the airport and at the lowest possible cost, with a 

strong construction constraint due to the fact that there were only less than 2 years to implement 

the system. A simple systems architecture analysis would probably concluded that the best solution 

was not to innovate and to use simply people, tugs and carts, as usual. This case study illustrates thus 

quite well a very classical project issue where the project system forgets the mission of the product 

system and replaces it by a purely project-oriented mission206 that diverts the project from achieving 

the product system mission. Any systems architect must thus always have in mind this example in 

order to avoid the same issue to occur on its working perimeter.  

                                                           
206 In Denver’s luggage management system case, “creating the world most innovative luggage management system” 
indeed became the only objective of the project (which is not a product, but a project system mission).  



125 

Appendix C – Some Systems Modeling Good 

Practices 

 Good practice 1: an architectural model shall be done to solve a specific problem. 

 Good practice 2: modeling activities shall be fully part of any system design project and this from 

the very beginning of the project 

 Good practice 3: be clear about the advantages provided by modeling and adopt a simplicity 

principle coupled with a permanent methodological doubt  (why do we need that? what is it for?) 

 Good practice 4: the natural evolution of a system makes very difficult to define its « true » 

operational reality: never hesitate therefore to use all the methods and tools which seem 

adapted to settle all operational uncertainties 

 Good practice 5: it is necessary to integrate all technical and human dimensions  of the system to 

be built, and this from the very beginning of the project 

 Good practice 6: the more a system modeling is done in an iterative way – based on a permanent 

questioning between the stakeholders and the systems architect  – the more it will be effective 

 Good practice 7: “black-box” modeling, without any feedback from the customer, must be 

banished: stakeholders must be involved in the architectural process 

 Good practice 8: the validation of an architectural model is a permanent process which must 

create trust in the model, from the points of view of both the architect and the domain engineers 

& customers who will verify & validate it 

 Good practice 9: the achievement, as soon as possible, of a “simple, but not simplistic”, 

preliminary  model  which “works” is fundamental in order to make the architectural approach 

credible by the stakeholders: details can typically be added later if necessary (a coarse-grained 

model can turn out to be sufficient) 

 Good practice 10: a complete & coarse-grained coherent model is more important than an 

accumulation of details, which are often not relevant to the project objectives 

 Good practice 11: systems architect expertise is primary: one must avoid beginners who know 

only how to use modeling tools (which is very different from architecting) 

 Good practice 12: the developed architectural models shall be considered as assets of the 

organization and managed coherently, in configuration & traceability and in space & time, by the 

organization in charge of the system design. 

Table 14 – Some good systems modeling practices207 

  

                                                           
207 Adapted from a personal communication of Professor Jacques Printz.  



126 

 



127 

Acknowledgements 

CESAMES Association and the CESAM Community would like to thank the numerous companies and 

architects without whom the CESAM Framework would have never existed. All concepts and 

methods presented in this pocket guide were indeed prototyped and progressively developed during 

various missions in close contact with their real concrete systems and problems. 

The second acknowledgement goes to the Ecole Polytechnique and to the sponsors of its industrial 

chair “Engineering of Complex Systems”, that is to say Dassault Aviation, Naval Group, Direction 

Générale de l’Armement (DGA) and, last but not least, Thales. This pocket guide is indeed, for 

CESAMES Association and the CESAM Community, the outcome of a long and progressive research 

and maturity process that was initiated 15 years ago with the creation of the chair. 

 



128 

References 

[1] Abts C., Boehm B., Brown W. A., Chulani S, Clark B.K., Horowitz E., Madachy R., Reifer D.J., 

Steece B., Software Cost Estimation with COCOMO II (with CD-ROM), Englewood Cliffs, 

Prentice-Hall, 2000 

[2] Aiguier M., Golden B., Krob D., Complex Systems Architecture and Modeling, [dans Posters of 

the first international conference on "Complex Systems Design & Management" (CSDM 2010), 

M. Aiguier, F. Bretaudeau, D. Krob, Eds.], 16 pages, 2010 

[3] Aiguier M., Golden B., Krob D., Modeling of Complex Systems II : A minimalist and unified 

semantics for heterogeneous integrated systems, Applied Mathematics and Computation, 218, 

(16), 8039-8055, doi : 10.1016/j.amc.2012.01.048, 2012 

[4] Aiguier M., Golden B., Krob D., An adequate logic for heterogeneous systems, [dans 

Proceedings of the 18th International Conference on Engineering of Complex Computer 

Systems (ICECCS’ 2013), Y. Liu, A. Martin, Eds.], IEEE, 2013 

[5] ANSI/GEIA, ANSI/GEIA EIA-632 – Processes for engineering a system, 2003 

[6] ANSI/IEEE, ANSI/IEEE 1471-2000 – Recommended Practice for Architecture Description of 

Software-Intensive Systems, 2000 

[7] Antonopoulos J., The great Minoan eruption of Thera volcano and the ensuing tsunami in the 

Greek archipelago, Natural hazards, 5 (2), 153-168,1992 

[8] Artale A., Formal Methods – Lecture III: Linear Temporal Logic, Free University of Bolzano 

[9] Aslaksen E.W., The changing nature of engineering, McGraw-Hill, 1996 

[10] Aslaksen E., Belcher R., Systems engineering, Prentice Hall, 1992  

[11] Baier C., Katoen J.P., Principles of Model Checking, MIT Press, 2008 

[12] Barwise J., Handbook of mathematical logics, North-Holland, 1972 

[13] Bellman R.E., Dynamic Programming, Princeton University Press, 1957 

[14] Berrebi J., Krob D., How to use systems architecture to specify the operational perimeter of an 

innovative product line ?, [dans "Proceedings of INCOSE International Symposium of 2012 (IS 

2012)", M. Celentano, Ed.], 15 pages, INCOSE, 2012 

[15] Blanchard B.S., Fabricky W.J., Systems engineering and analysis, Prentice Hall, 1998 

[16] Bliudze S., Krob D., Towards a Functional Formalism for Modelling Complex Industrial Systems, 

[dans ``European Conference on Complex Systems’’ (ECCS’05), P. Bourgine, F. Képès, 

M. Schoenauer, Eds.], (article 193), 20 pages, 2005 

[17] Bliudze S., Krob D., Towards a Functional Formalism for Modelling Complex Industrial Systems, 

ComPlexUs, Special Issue : Complex Systems - European Conference - November 2005 - 

Selected Papers - Part 1, 2, (3-4), 163-176, 2006  



129 

[18] Bliudze S., Krob D., Modeling of Complex Systems - Systems as data-flow machines, 

Fundamenta Informaticae, Special Issue : Machines, Computations and Universality, 91, 1-24, 

2009 

[19] Boehm B., Software Engineering Economics, Englewood Cliffs, Prentice-Hall, 1981 

[20] Booch G., Jacobson I., Rumbaugh J., The Unified Modeling Language Reference Manual, 

Second Edition, Addison-Wesley, 2004 

[21] Börger E., Stärk R., Abstract state machines, Springer, 2003 

[22] Caseau Y., Krob D., Peyronnet S., Complexité des systèmes d’information : une famille de 

mesures de la complexité scalaire d’un schéma d’architecture, Génie Logiciel, 82, 23-30, 2007 

[23] Cha P.D., Rosenberg J., Dym C.L., Fundamentals of modeling and analyzing engineering 

systems, Cambridge University Press, 2000 

[24] Chalé Gongora H. G., Doufene A., Krob D., Complex Systems Architecture Framework. Extension 

to Multi-Objective Optimization, 3rd international conference on "Complex Systems Design & 

Management" (CSDM 2012), Y. Caseau, D. Krob, A. Rauzy, Eds.], Springer Verlag, 105-123, 2012 

[25] Cousot P., Cousot R., Abstract Interpretation, Symposium on Models of Programming 

Languages and Computation, ACM Computing Surveys, 28(2):324-328, June 1996 

[26] Dauron A., Douffène A. , Krob D., Complex systems operational analysis - A case study for 

electric vehicles, [dans Posters of the 2nd international conference on "Complex Systems 

Design & Management" (CSDM 2011), O. Hammami, D. Krob, J.L. Voirin, Eds.], 18 pages, 2011 

[27] de Neufville R., The Baggage System at Denver: Prospects and Lessons, Journal of Air Transport 

Management, Vol. 1, No. 4, Dec., 229-236, 1994  

[28] de Weck O., Strategic Engineering – Designing systems for an uncertain future, MIT, 2006 

[29] de Weck O., Krob D., Liberti L., Marinelli F., A general framework for combined module- and 

scale-based product platform design, [dans Proceedings of the "Second International 

Engineering Systems Symposium", D. Roos, Ed.], 15 pages, MIT, 2009 

[30] de Weck O.L., Roos D., Magee C.L., Engineering systems – Meeting human needs in a complex 

technological world, The MIT Press, 2011 

[31] Doufène A., Krob D., Sharing the Total Cost of Ownership of Electric Vehicles : A Study on the 

Application of Game Theory, [dans Proceedings of INCOSE International Symposium of 2013 

(IS2013)], 2013 

[32] Doufène A., Krob D., Model-Based operational analysis for complex systems - A case study for 

electric vehicles, [dans Proceedings of INCOSE International Symposium of 2014 (IS2014)], 

2014 

[33] Doufène A., Krob D., Pareto Optimality and Nash Equilibrium for Building Stable Systems, IEEE 

International Systems Conference, 2015 

[34] Friedenthal S., Moore A.C., Steiner R., A Practical Guide to SysML : the Systems Modeling 

Language, Morgan Kaufmann OMG Press, 2012 



130 

[35] Giakoumakis V., Krob D., Liberti L., Roda F., Optimal technological architecture evolutions of 

Information Systems, [dans Proceedings of the first international conference on "Complex 

Systems Design & Management" (CSDM 2010), M. Aiguier, F. Bretaudeau, D. Krob, Eds.], 137-

148, Springer Verlag, 2010 

[36] Giakoumakis V., Krob D., Liberti L., Roda F., Technological architecture evolutions of 

Information Systems : trade-off and optimization, Concurrent Engineering : Research and 

Applications, Volume 20, Issue 2, 127-147, 2012 

[37] Gruhl W., Lessons Learned, Cost/Schedule Assessment Guide, Internal presentation, NASA 

Comptroller’s office, 1992 

[38] Grady J.O., System Requirements Analysis, Elsevier, 2006 

[39] Grady J.O., System Verification – Proving the Design Solution Satisfies the Requirements, 

Elsevier, 2007 

[40] Hofstadter, Douglas R., Gödel, Escher, Bach: An Eternal Golden Braid, Basic Books, 1979 

[41] Honour E.C., Understanding the value of systems engineering, INCOSE 2014 International 

Symposium, Vol. 14, 1207–1222, Toulouse, June 20-24, 2014, France, INCOSE, 2004; accessible 

at http://www.seintelligence.fr/content/images/2015/12/ValueSE-INCOSE04.pdf 

[42] IEEE, IEEE 1220-2005 – Standard for Application and Management of the Systems Engineering 

Process, Institute of Electrical and Electronics Engineers, 2005 

[43] INCOSE, Systems Engineering Handbook, A guide for system life cycle processes and activities, 

INCOSE, January 2011, 

[44] ISO/IEC/IEEE, ISO/IEC/IEEE 15288:2015 – Systems and software engineering -- System life cycle 

processes, May 2015 

[45] Katoen J.P., LTL Model Checking, University of Twente, 2009 

[46]  Korzybski A., Science and Sanity: an Introduction to Non-Aristotelian Systems and General 

Semantics, International Nonaristotelian, 1950 

[47] Kossiakoff A., Sweet W.N., Systems engineering – Principles and practice, Wiley, 2003 

[48] Krob D., Modelling of Complex Software Systems : a Reasoned Overview, [dans ``26th IFIP WG 

6.1 International Conference on Formal Methods for Networked and Distributed Systems" 

(FORTE’2006), E. Najm, J.-F. Pradat-Peyre, V. Viguié Donzeau-Gouge, Eds.], Lecture Notes in 

Computer Science, 4229, 1-22, Springer Verlag, 2006 (Invited speaker) 

[49] Krob D., Architecture of complex systems : why, what and how ?, [dans Proceedings of 

``COgnitive systems with Interactive Sensors (COGIS’07)", H. Aghajan, J.P. Lecadre, R. Reynaud, 

Eds.], Stanford University, 1 page, 2007 (Invited speaker) 

[50] Krob D., Comment sécuriser la conception et le déploiement des logiciels métiers par une 

démarche d’architecture collaborative ?, [in ``Journée Française des Tests Logiciels", B. Homès, 

Ed.], 23 pages, CFTL, 2008 

[51] Krob D., Eléments d’architecture des systèmes complexes, [in "Gestion de la complexité et de 

l’information dans les grands systèmes critiques", A. Appriou, Ed.], 179-207, CNRS Editions, 

2009 

http://www.seintelligence.fr/content/images/2015/12/ValueSE-INCOSE04.pdf


131 

[52] Krob D., Eléments de systémique – Architecture de systèmes, [in Complexité-Simplexité, A. 

Berthoz - J.L. Petit, Eds.], Editions Odile Jacob, 2012 

[53] Krob D., Eléments de modélisation systémique, [in L’Energie à découvert, R. Mossery - C. 

Jeandel, Eds.], CNRS Editions, 2013 

[54] Kröger F., Merz S., Temporal Logic and State Systems, Springer, 2008 

[55] Lamport L., Specifying systems – The TLA+ language and tools for hardware and software 

engineers, Addison-Wesley, 2003 

[56] Lions J.L., Ariane 5 – Flight 501 Failure – Report by the Inquiry Board, ESA, 1996   

[57] Maier M.W., Rechtin E., The art of systems architecting, CRC Press, 2002 

[58] Manna Z., Pnueli A., The Temporal Logic of Reactive and Concurrent Systems, Springer, 1992 

[59] Marwedel P., Embedded system design, Kluwer, 2003 

[60] Meadows D.H., Meadows D.L., Randers J., Berhens W.W. III, The Limits to Growth, Universe 

Books, 1972 

[61] Meinadier J.P., Ingénierie et intégration de systèmes, Lavoisier, 1998 

[62] Meinadier J.P., Le métier d’intégration de systèmes, Lavoisier, 2002 

[63] Miles L.D., Techniques of value analysis and engineering, McGraw-Hill, 1972 

[64] Murray R.M., Linear Temporal Logic, California Institute of Technology, 2012 

[65] Murschel A., The Structure and Function of Ptolemy's Physical Hypotheses of Planetary Motion, 

Journal for the History of Astronomy, xxvii, 33–6, 1995 

[66] NASA, Systems Engineering Handbook, 2007-edition, NASA/SP-2007-6105, 2007 

[67] Novikova T., Papadopoulos G.A., McCoy F.W., Modelling of tsunami generated by the gian late 

bronze age eruption of Thera, south Aegean see, Greece, Geophysical Journal International, 

186 (2), 665-680, 2011 

[68] Parnell G.S., Driscoll P.J., Henderson D.L., Decision marking in systems engineering and 

management, Wiley, 20011 

[69] Pnueli A., The temporal logics of programs, IEEE 54th Annual Symposium on Foundations of 

Computer Science (FOCS), 46-57, IEEE, 1977 

[70] Printz J., Productivité des programmeurs, Hermès, 2001 

[71] Sage A.P., Armstrong J.E., Introduction to systems engineering, Wiley, 2000 

[72] Schloh M., The Denver International Airport automated baggage handling system, Cal Poly, Feb 

16, 1996  

[73] Severance F.L., System modeling and simulation – An introduction, Wiley, 2001 

[74] Sillitto H., Architecting systems – Concepts, principles and practice, College Publications, 2014 

[75] Simon H., The Architecture of Complexity, Proceedings of the American Philosophica, 106 (6), 

467-482, December, 1962 



132 

[76] Simpson T.W., Siddique Z., Jiao J.R., Product platform and product family design, Methods and 

applications, Springer Verlag, 2006 

[77] The Open Group, TOGAF Version 9.1 – The Book, The Open Group, 2011 

[78] Turner W.C., Mize J.H., Case K.H., Nazemetz J.W., Introduction to industrial and systems 

engineering, Prentice Hall, 1978  

[79] Valerdi R., The Constructive Systems Engineering Cost Model (COSYSMO), Quantifying the Costs 

of Systems Engineering Effort in Complex Systems, VDM Verlag Dr. Muller, 2008 

[80] von Bertalanffy K.L., General System Theory : Foundations, Development, Applications, George 

Braziller, 1976 

[81] White S.A., Miers D., BPMN Modeling and Reference Guide, Understanding and Using BPMN, 

Future Strategies, 2008 

[82] Wikipedia, Airbus A380, https://en.wikipedia.org/wiki/Airbus_A380  

[83] Wikipedia, COCOMO, https://en.wikipedia.org/wiki/COCOMO  

[84] Wikipedia, COSYSMO, https://en.wikipedia.org/wiki/COSYSMO 

[85] Wikipedia, Deferent and epicycle, https://en.wikipedia.org/wiki/Deferent_and_epicycle  

[86] Wikipedia, Enterprise architecture framework,  

https://en.wikipedia.org/wiki/Enterprise_architecture_framework 

[87] Wikipedia, Nash equilibrium, https://en.wikipedia.org/wiki/Nash_equilibrium 

[88] Wikipedia, Occam’s razor, https://en.wikipedia.org/wiki/Occam%27s_razor 

[89] Wikipedia, Organon, https://en.wikipedia.org/wiki/Organon  

[90] Wikipedia, OSI model, https://en.wikipedia.org/wiki/OSI_model  

[91] Wikipedia, Predicate, https://en.wikipedia.org/wiki/Predicate_(mathematical_logic)  

[92] Wikipedia, Systems architecture, https://en.wikipedia.org/wiki/Systems_architecture  

[93] Wikipedia, Systems biology, https://en.wikipedia.org/wiki/Systems_biology  

[94] Wikipedia, Systems engineering, https://en.wikipedia.org/wiki/Systems_engineering 

[95] Wikipedia, Systems psychology, https://en.wikipedia.org/wiki/Systems_psychology  

[96] Wikipedia, Systems theory, https://en.wikipedia.org/wiki/Systems_theory 

[97] Wikipedia, Trade-off, https://en.wikipedia.org/wiki/Trade-off 

[98] Wikiquote, Systems engineering, https://en.wikiquote.org/wiki/Systems_engineering  

[99] Winskel G., The formal semantics of programming languages – An introduction, The MIT Press, 

1993 

[100] Zeigler B.P., Praehofer H., Kim T.G., Theory of modeling and simulation – Integrating discrete 

events and continuous dynamic systems, Academic Press, 2000 

  

https://en.wikipedia.org/wiki/Airbus_A380
https://en.wikipedia.org/wiki/COCOMO
https://en.wikipedia.org/wiki/COSYSMO
https://en.wikipedia.org/wiki/Deferent_and_epicycle
https://en.wikipedia.org/wiki/Enterprise_architecture_framework
https://en.wikipedia.org/wiki/Nash_equilibrium
https://en.wikipedia.org/wiki/Occam%27s_razor
https://en.wikipedia.org/wiki/Organon
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Predicate_(mathematical_logic)
https://en.wikipedia.org/wiki/Systems_architecture
https://en.wikipedia.org/wiki/Systems_biology
https://en.wikipedia.org/wiki/Systems_engineering
https://en.wikipedia.org/wiki/Systems_psychology
https://en.wikipedia.org/wiki/Systems_theory
https://en.wikipedia.org/wiki/Trade-off
https://en.wikiquote.org/wiki/Systems_engineering


133 

 

 


